metadata
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- thennal/IMaSC
- thennal/ulca_ml
- thennal/msc
- thennal/indic_tts_ml
metrics:
- wer
model-index:
- name: Whisper Medium Malayalam - Thennal D K
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ml
split: test
args: ml
metrics:
- type: wer
value: 38.62068965517241
name: Wer
- type: cer
value: 7.325639739086803
name: Cer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: FLEURS
type: google/fleurs
config: ml_in
split: test
args: ml_in
metrics:
- type: wer
value: 27.850740045862
name: Wer
- type: cer
value: 8.821352343856674
name: Cer
- type: wer
value: 11.85
name: WER
Whisper Medium Malayalam
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- WER: 38.6207
- CER: 7.3256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2