File size: 2,175 Bytes
f3e4b92 fc1a7ae f3e4b92 f246440 f3e4b92 90a7ef7 f246440 90a7ef7 f246440 90a7ef7 b71fe6d 90a7ef7 b71fe6d 90a7ef7 0f27a42 90a7ef7 0f27a42 ded584b f3e4b92 fc1a7ae f3e4b92 fc1a7ae f3e4b92 fc1a7ae a925747 f3e4b92 fc1a7ae f3e4b92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- thennal/IMaSC
- thennal/ulca_ml
- thennal/msc
- thennal/indic_tts_ml
metrics:
- wer
model-index:
- name: Whisper Medium Malayalam - Thennal D K
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ml
split: test
args: ml
metrics:
- type: wer
value: 38.62068965517241
name: Wer
- type: cer
value: 7.325639739086803
name: Cer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: FLEURS
type: google/fleurs
config: ml_in
split: test
args: ml_in
metrics:
- type: wer
value: 27.850740045862
name: Wer
- type: cer
value: 8.821352343856674
name: Cer
- type: wer
value: 11.85
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Malayalam
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- WER: 38.6207
- CER: 7.3256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|