File size: 18,672 Bytes
6f5190d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import json
import logging
import os
from typing import Dict, List, Optional, Union
import numpy as np
import torch
import torch.multiprocessing as mp
from peft import PeftModel
from torch import Tensor, device, nn
from tqdm.autonotebook import tqdm, trange
from transformers import (
AutoModel,
AutoConfig,
PretrainedConfig,
PreTrainedModel,
AutoTokenizer,
LlamaConfig,
MistralConfig,
GemmaConfig,
Qwen2Config,
)
logger = logging.getLogger(__name__)
def batch_to_device(batch, target_device: device):
"""
send a pytorch batch to a device (CPU/GPU)
"""
for key in batch:
if isinstance(batch[key], Tensor):
batch[key] = batch[key].to(target_device)
return batch
class LLMEncoderConfig(PretrainedConfig):
def __init__(
self,
pooling_mode: str = "weighted_mean",
max_length: int = 512,
doc_max_length: int = 400,
skip_instruction: bool = True,
**kwargs,
):
if pooling_mode not in ["mean", "weighted_mean", "eos_token", "bos_token"]:
raise ValueError(
(f"Pooling mode {pooling_mode} is not supported.",
"Please choose one of 'mean', 'weighted_mean', 'eos_token', 'bos_token'.")
)
self.pooling_mode = pooling_mode
self.max_length = max_length
self.doc_max_length = doc_max_length
self.skip_instruction = skip_instruction
self.model_config = None
self.base_model = None
super().__init__(**kwargs)
class LLMEncoder(PreTrainedModel):
config_class = LLMEncoderConfig
def __init__(
self,
model: PreTrainedModel,
tokenizer: AutoTokenizer,
config: LLMEncoderConfig
):
super().__init__(config)
self.model = model
self.tokenizer = tokenizer
self.pooling_mode = config.pooling_mode
self.max_length = config.max_length
self.doc_max_length = config.doc_max_length
self.skip_instruction = config.skip_instruction
self.model_config = None
@classmethod
def from_pretrained(
self,
base_model_name_or_path,
peft_model_name_or_path=None,
config=None,
**kwargs,
):
"""
Load a pretrained model from a model identifier or path.
Args:
base_model_name_or_path: Model identifier or path to pretrained model.
peft_model_name_or_path: Path to any PEFT models to apply.
Returns: L3Prune model.
"""
if not config:
config = LLMEncoderConfig()
if not config.base_model:
config.base_model = base_model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
if config.model_config:
model_config = AutoConfig.from_pretrained(config.base_model)
model_config = model_config.from_dict(config.model_config)
else:
model_config = AutoConfig.from_pretrained(base_model_name_or_path)
config.model_config = model_config
model = AutoModel.from_pretrained(base_model_name_or_path, config=model_config, **kwargs)
if peft_model_name_or_path is not None:
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
)
model = model.merge_and_unload()
return self(model=model, tokenizer=tokenizer, config=config)
def prune(self, percent_prune=0):
"""
Prune a model to a percentage of layers of the base model. If percent_prune is equal to or greater than 1,
it is taken as the specific layer number to prune to. For example, if percent_prune=0.3, 30% of the layers will be pruned. If
percent_prune=3, the model will be pruned to 3 layers.
"""
# take it as the specific layer number to prune to
if percent_prune >= 1:
new_num_layers = int(percent_prune)
else:
new_num_layers = int(self.model.config.num_hidden_layers * (1 - percent_prune))
print(f"Pruning to {new_num_layers} layer.")
self.model.layers = self.model.layers[:new_num_layers]
self.model.config.num_hidden_layers = new_num_layers
self.config.model_config.num_hidden_layers = new_num_layers
def prepare_for_tokenization(self, text):
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B-Instruct":
text = (
"<|start_header_id|>user<|end_header_id|>\n\n"
+ text.strip()
+ "<|eot_id|>"
)
return text
if self.model.config._name_or_path in [
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Llama-2-7b-chat-hf",
]:
text = "[INST] " + text.strip() + " [/INST]"
if self.model.config._name_or_path in [
"google/gemma-2-9b-it",
]:
text = "<bos><start_of_turn>user\n" + text.strip() + "<end_of_turn>"
if self.model.config._name_or_path in [
"Qwen/Qwen2-1.5B-Instruct",
"Qwen/Qwen2-7B-Instruct",
]:
text = "<|im_start|>user\n" + text.strip() + "<|im_end|>"
if self.pooling_mode == "eos_token":
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B":
text = text.strip() + "<|end_of_text|>"
elif isinstance(self.model.config, LlamaConfig) or isinstance(
self.model.config, MistralConfig
):
text = text.strip() + " </s>"
elif isinstance(self.model.config, GemmaConfig):
text = text.strip() + "<eos>"
elif isinstance(self.model.config, Qwen2Config):
text = text.strip() + "<|endoftext|>"
return text
def tokenize(self, texts):
texts_2 = []
original_texts = []
for text in texts:
t = text.split("!@#$%^&*()")
texts_2.append(t[1] if len(t) > 1 else "")
original_texts.append("".join(t))
original = self.tokenizer(
original_texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.max_length,
)
embed_mask = None
for t_i, t in enumerate(texts_2):
ids = self.tokenizer(
[t],
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.max_length,
add_special_tokens=False,
)
if embed_mask is None:
e_m = torch.zeros_like(original["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
len(ids["input_ids"][0])
)
embed_mask = e_m.unsqueeze(0)
else:
e_m = torch.zeros_like(original["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
len(ids["input_ids"][0])
)
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
original["embed_mask"] = embed_mask
return original
def _skip_instruction(self, sentence_feature):
assert (
sentence_feature["attention_mask"].shape
== sentence_feature["embed_mask"].shape
)
sentence_feature["attention_mask"] = sentence_feature["embed_mask"]
def forward(self, sentence_feature: Dict[str, Tensor]):
embed_mask = None
if "embed_mask" in sentence_feature:
embed_mask = sentence_feature.pop("embed_mask")
reps = self.model(**sentence_feature)
sentence_feature["embed_mask"] = embed_mask
return self.get_pooling(sentence_feature, reps.last_hidden_state)
def get_pooling(self, features, last_hidden_states): # All models padded from left
assert (
self.tokenizer.padding_side == "left"
), "Pooling modes are implemented for padding from left."
if self.skip_instruction:
self._skip_instruction(features)
seq_lengths = features["attention_mask"].sum(dim=-1)
if self.pooling_mode == "mean":
return torch.stack(
[
last_hidden_states[i, -length:, :].mean(dim=0)
for i, length in enumerate(seq_lengths)
],
dim=0,
)
elif self.pooling_mode == "weighted_mean":
bs, l, _ = last_hidden_states.shape
complete_weights = torch.zeros(bs, l, device=last_hidden_states.device)
for i, seq_l in enumerate(seq_lengths):
if seq_l > 0:
complete_weights[i, -seq_l:] = torch.arange(seq_l) + 1
complete_weights[i] /= torch.clamp(
complete_weights[i].sum(), min=1e-9
)
return torch.sum(last_hidden_states * complete_weights.unsqueeze(-1), dim=1)
elif self.pooling_mode == "eos_token" or self.pooling_mode == "last_token":
return last_hidden_states[:, -1]
elif self.pooling_mode == "bos_token":
return last_hidden_states[
features["input_ids"] == self.tokenizer.bos_token_id
]
else:
raise ValueError(f"{self.pooling_mode} is not implemented yet.")
def _convert_to_str(self, instruction, text):
tokenized_q = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.max_length,
add_special_tokens=False,
)
tokenized_q_length = len(tokenized_q["input_ids"][0])
while tokenized_q_length > self.doc_max_length:
reduction_ratio = self.doc_max_length / tokenized_q_length
reduced_length = int(len(text.split()) * reduction_ratio)
text = " ".join(text.split()[:reduced_length])
tokenized_q = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.max_length,
add_special_tokens=False,
)
tokenized_q_length = len(tokenized_q["input_ids"][0])
return (
f"{instruction.strip()} !@#$%^&*(){text}"
if instruction
else f"!@#$%^&*(){text}"
)
def encode(
self,
sentences: Union[str, List[str]],
batch_size: int = 32,
show_progress_bar: bool = True,
convert_to_numpy: bool = False,
convert_to_tensor: bool = False,
device: Optional[str] = None,
):
"""
Encode a list of sentences to their respective embeddings. The sentences can be a list of strings or a string.
Args:
sentences: sentence or sentences to encode.
batch_size: batch size for turning sentence tokens into embeddings.
show_progress_bar: whether to show progress bars during encoding steps.
convert_to_numpy: If true, return numpy arrays instead of torch tensors.
convert_to_tensor: If true, return torch tensors (default).
device: torch backend device identifier (e.g., 'cuda', 'cpu','mps' etc.). If not specified,
the default is to use cuda when available, otherwise cpu. Note that only the choice of 'cuda' supports
multiprocessing as currently implemented.
Returns: embeddings of the sentences. Embeddings are detached and always on the CPU (see _encode implementation).
"""
if isinstance(sentences[0], str) and isinstance(sentences[-1], int):
sentences = [sentences]
# required for MEDI version of MTEB
if isinstance(sentences[0], str):
sentences = [[""] + [sentence] for sentence in sentences]
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
concatenated_input_texts = []
for sentence in sentences:
assert isinstance(sentence[0], str)
assert isinstance(sentence[1], str)
concatenated_input_texts.append(
self._convert_to_str(sentence[0], sentence[1])
)
sentences = concatenated_input_texts
self.eval()
if convert_to_tensor:
convert_to_numpy = False
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
all_embeddings = []
if torch.cuda.device_count() <= 1:
# This branch also support mps devices
self.to(device)
for start_index in trange(
0,
len(sentences),
batch_size,
desc="Batches",
disable=not show_progress_bar,
):
sentences_batch = sentences_sorted[
start_index : start_index + batch_size
]
embeddings = self._encode(
sentences_batch, device=device, convert_to_numpy=convert_to_numpy
)
all_embeddings.append(embeddings)
else:
num_proc = torch.cuda.device_count()
cuda_compatible_multiprocess = mp.get_context("spawn")
with cuda_compatible_multiprocess.Pool(num_proc) as p:
sentences_batches = [
sentences_sorted[start_index : start_index + batch_size]
for start_index in range(0, len(sentences), batch_size)
]
progress_bar = tqdm(
total=len(sentences_batches),
desc="Batches",
disable=not show_progress_bar,
)
results = []
def update(*args):
progress_bar.update()
for batch in sentences_batches:
results.append(
p.apply_async(
self._encode,
args=(batch, None, convert_to_numpy, True),
callback=update,
)
)
all_embeddings = [result.get() for result in results]
progress_bar.close()
all_embeddings = torch.cat(all_embeddings, dim=0)
all_embeddings = all_embeddings[np.argsort(length_sorted_idx)]
all_embeddings = all_embeddings.to(torch.float32)
if convert_to_numpy:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
return all_embeddings
def save(self, output_path, merge_before_save=False, save_config=True):
if merge_before_save and isinstance(self.model, PeftModel):
self.model = self.model.merge_and_unload()
if hasattr(self.model, "_hf_peft_config_loaded"):
self.model._hf_peft_config_loaded = False
self.model.save_pretrained(output_path)
self.tokenizer.save_pretrained(output_path)
l3prune_config = {
"pooling_mode": self.pooling_mode,
"max_length": self.max_length,
"doc_max_length": self.doc_max_length,
"skip_instruction": self.skip_instruction,
}
if save_config:
os.makedirs(output_path, exist_ok=True)
with open(f"{output_path}/l3prune_config.json", "w") as fOut:
json.dump(l3prune_config, fOut, indent=4)
def _encode(
self,
sentences_batch,
device: Optional[str] = None,
convert_to_numpy: bool = False,
multiprocessing=False,
):
if multiprocessing:
# multiprocessing only supports CUDA devices at this time, so we ignore the value of device
# and use cuda:rank for the device
rank = mp.current_process()._identity[0]
if device is None and torch.cuda.is_available():
device = f"cuda:{rank % torch.cuda.device_count()}"
self.to(device)
features = self.tokenize(
[self.prepare_for_tokenization(sentence) for sentence in sentences_batch]
)
features = batch_to_device(features, device)
with torch.no_grad():
embeddings = self.forward(features)
embeddings = embeddings.detach()
embeddings = embeddings.cpu()
return embeddings
def _text_length(self, text: Union[List[int], List[List[int]]]):
"""
Help function to get the length for the input text. Text can be either a string (which means a single text)
a list of ints (which means a single tokenized text), or a tuple of list of ints
(representing several text inputs to the model).
"""
if (
isinstance(text, str)
or (isinstance(text, list) and isinstance(text[0], int))
or len(text) == 0
): # Single text, list of ints, or empty
return len(text)
if isinstance(text, dict): # {key: value} case
return len(next(iter(text.values())))
elif not hasattr(text, "__len__"): # Object has no len() method
return 1
else:
return sum([len(t) for t in text])
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
return self.model.resize_token_embeddings(
new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of
)
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
self.model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs
)
def save_pretrained(self, save_directory, **kwargs):
self.tokenizer.save_pretrained(save_directory, **kwargs)
super().save_pretrained(save_directory, **kwargs)
def push_to_hub(self, repo_id, **kwargs):
self.tokenizer.push_to_hub(repo_id, **kwargs)
super().push_to_hub(repo_id, **kwargs) |