File size: 1,739 Bytes
26df861
 
 
 
 
a275ab5
26df861
 
 
a275ab5
 
e257221
26df861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a275ab5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: llama2
base_model: togethercomputer/Llama-2-7B-32K-Instruct
tags:
- generated_from_trainer
- maths
model-index:
- name: llama2-themanas-MATH_aLgEbRa
  results: []
datasets:
- themanas021/MATH-Algebra
pipeline_tag: text2text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama2-themanas-MATH_aLgEbRa

This model is a fine-tuned version of [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2047

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7178        | 0.48  | 3    | 1.5652          |
| 1.4869        | 0.96  | 6    | 1.3622          |
| 1.2911        | 1.44  | 9    | 1.2362          |
| 1.2598        | 1.92  | 12   | 1.2047          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0