File size: 6,875 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
TIPM v1.5 Visualization Utilities
"""

from typing import Dict, Any
import logging

# Optional imports with graceful fallback
try:
    import matplotlib.pyplot as plt

    HAS_MATPLOTLIB = True
except ImportError:
    HAS_MATPLOTLIB = False
    plt = None
try:
    import seaborn as sns

    HAS_SEABORN = True
except ImportError:
    HAS_SEABORN = False
    sns = None


class TIPMVisualizer:
    """
    Visualization utilities for TIPM model outputs
    """

    def __init__(self):
        """Initialize visualizer with default styling"""
        self.logger = logging.getLogger("TIPM.Visualizer")
        if not self.logger.handlers:
            handler = logging.StreamHandler()
            formatter = logging.Formatter(
                "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            )
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)
            self.logger.setLevel(logging.INFO)
        if HAS_MATPLOTLIB:
            plt.style.use("seaborn-v0_8")
        else:
            self.logger.warning("matplotlib not available, skipping style setup")
        if HAS_SEABORN:
            sns.set_palette("husl")
        else:
            self.logger.warning("seaborn not available, skipping palette setup")

    def plot_impact_summary(self, prediction_result) -> None:
        """Create summary visualization of tariff impact prediction"""
        if not HAS_MATPLOTLIB:
            self.logger.warning("matplotlib not available, cannot plot impact summary")
            return
        fig, axes = plt.subplots(2, 3, figsize=(15, 10))
        fig.suptitle("Tariff Impact Propagation Summary", fontsize=16)
        # ...existing code for plotting...
        try:
            plt.tight_layout()
            plt.show()
        except Exception as e:
            self.logger.warning("matplotlib plotting failed: %s", e)

    def _plot_trade_flow_impact(self, ax, trade_impact):
        """Plot trade flow disruption"""
        if hasattr(trade_impact, "supply_chain_disruption"):
            disruption = trade_impact.supply_chain_disruption
            sectors = list(disruption.keys())
            values = list(disruption.values())

            ax.bar(sectors[:5], values[:5])  # Top 5 affected sectors
            ax.set_title("Supply Chain Disruption")
            ax.set_ylabel("Disruption Score")
            ax.tick_params(axis="x", rotation=45)
        else:
            ax.text(
                0.5,
                0.5,
                "No trade flow data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def _plot_industry_response(self, ax, industry_impact):
        """Plot industry-level responses"""
        if hasattr(industry_impact, "sector_impacts"):
            sectors = list(industry_impact.sector_impacts.keys())[:5]
            impacts = [industry_impact.sector_impacts[s] for s in sectors]

            ax.barh(sectors, impacts)
            ax.set_title("Industry Sector Impacts")
            ax.set_xlabel("Impact Magnitude")
        else:
            ax.text(
                0.5,
                0.5,
                "No industry data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def _plot_firm_impact(self, ax, firm_impact):
        """Plot firm-level impacts"""
        if hasattr(firm_impact, "layoff_risk"):
            sectors = list(firm_impact.layoff_risk.keys())[:5]
            risks = [firm_impact.layoff_risk[s] for s in sectors]

            ax.scatter(risks, sectors)
            ax.set_title("Layoff Risk by Sector")
            ax.set_xlabel("Layoff Risk")
        else:
            ax.text(
                0.5,
                0.5,
                "No firm data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def _plot_consumer_impact(self, ax, consumer_impact):
        """Plot consumer market impacts"""
        if hasattr(consumer_impact, "price_increases"):
            sectors = list(consumer_impact.price_increases.keys())[:5]
            prices = [consumer_impact.price_increases[s] for s in sectors]

            ax.pie(prices, labels=sectors, autopct="%1.1f%%")
            ax.set_title("Price Increases by Sector")
        else:
            ax.text(
                0.5,
                0.5,
                "No consumer data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def _plot_geopolitical_impact(self, ax, geo_impact):
        """Plot geopolitical and social impacts"""
        if hasattr(geo_impact, "social_tension"):
            sectors = list(geo_impact.social_tension.keys())[:5]
            tensions = [geo_impact.social_tension[s] for s in sectors]

            ax.plot(sectors, tensions, marker="o")
            ax.set_title("Social Tension Index")
            ax.set_ylabel("Tension Level")
            ax.tick_params(axis="x", rotation=45)
        else:
            ax.text(
                0.5,
                0.5,
                "No geopolitical data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def _plot_confidence_scores(self, ax, confidence_scores):
        """Plot model confidence scores"""
        if confidence_scores:
            layers = list(confidence_scores.keys())
            scores = list(confidence_scores.values())

            colors = [
                "red" if s < 0.5 else "yellow" if s < 0.7 else "green" for s in scores
            ]
            ax.bar(layers, scores, color=colors)
            ax.set_title("Model Confidence Scores")
            ax.set_ylabel("Confidence")
            ax.set_ylim(0, 1)
            ax.tick_params(axis="x", rotation=45)
        else:
            ax.text(
                0.5,
                0.5,
                "No confidence data",
                ha="center",
                va="center",
                transform=ax.transAxes,
            )

    def create_network_visualization(self, trade_graph) -> None:
        """Create trade network visualization"""
        # Placeholder for network visualization
        # Would use networkx and matplotlib to create network plots
        print("Network visualization would be created here")

    def create_dashboard(self, model_results: Dict[str, Any]) -> None:
        """Create interactive dashboard with Streamlit"""
        # Placeholder for Streamlit dashboard
        print("Interactive dashboard would be created here")


def visualize_country_impact(country_data: Any) -> None:
    """Visualize country impact data (stub)."""
    logging.info("Visualizing impact for %s", getattr(country_data, "name", "Unknown"))
    # Placeholder for actual implementation