File size: 10,757 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
NLP utilities for policy text processing
"""

import re
from typing import List, Dict, Any, Tuple
import pandas as pd
import numpy as np
import logging


class PolicyTextProcessor:
    """
    Text processing utilities for policy documents
    """

    def __init__(self):
        """Initialize text processor with patterns and vocabularies"""
        # Country name mappings
        self.country_mappings = {
            "united states": "US",
            "china": "CN",
            "singapore": "SG",
            "malaysia": "MY",
            "thailand": "TH",
            "vietnam": "VN",
            "indonesia": "ID",
            "philippines": "PH",
            "japan": "JP",
            "south korea": "KR",
            "germany": "DE",
            "france": "FR",
            "united kingdom": "UK",
            "canada": "CA",
            "mexico": "MX",
            "brazil": "BR",
            "india": "IN",
            "australia": "AU",
        }

        # Policy type indicators
        self.policy_indicators = {
            "tariff": ["tariff", "duty", "customs", "import tax"],
            "quota": ["quota", "limit", "restriction", "ceiling"],
            "subsidy": ["subsidy", "support", "assistance", "aid"],
            "sanction": ["sanction", "penalty", "embargo", "ban"],
            "agreement": ["agreement", "treaty", "accord", "pact"],
        }

        # Urgency indicators
        self.urgency_patterns = [
            r"immediate(?:ly)?",
            r"urgent(?:ly)?",
            r"emergency",
            r"temporary",
            r"suspension",
            r"retaliation",
            r"response\s+to",
            r"investigation",
            r"anti.?dumping",
            r"safeguard",
        ]

        # Date patterns
        self.date_patterns = [
            r"\d{1,2}[/-]\d{1,2}[/-]\d{2,4}",
            r"\d{4}[/-]\d{1,2}[/-]\d{1,2}",
            r"(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}",
        ]

    def clean_text(self, text: str) -> str:
        """Clean and normalize policy text"""
        if not isinstance(text, str):
            return ""

        # Remove extra whitespace
        text = re.sub(r"\s+", " ", text)

        # Remove special characters but keep punctuation
        text = re.sub(r"[^\w\s\.,;:!?()-]", " ", text)

        # Normalize case
        text = text.strip().lower()

        return text

    def extract_entities(self, text: str) -> Dict[str, List[str]]:
        """Extract named entities from policy text"""
        text_clean = self.clean_text(text)

        entities = {
            "countries": [],
            "dates": [],
            "hs_codes": [],
            "amounts": [],
            "policy_types": [],
        }

        # Extract countries
        for country_name, country_code in self.country_mappings.items():
            if country_name in text_clean:
                entities["countries"].append(country_code)

        # Extract dates
        for pattern in self.date_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            entities["dates"].extend(matches)

        # Extract HS codes
        hs_patterns = [
            r"hs\s*(\d{2,10})",
            r"heading\s*(\d{2,4})",
            r"tariff\s*line\s*(\d+)",
            r"classification\s*(\d+)",
        ]
        for pattern in hs_patterns:
            matches = re.findall(pattern, text_clean, re.IGNORECASE)
            entities["hs_codes"].extend(matches)

        # Extract monetary amounts
        amount_patterns = [
            r"\$\s*(\d+(?:,\d{3})*(?:\.\d{2})?)",
            r"(\d+(?:,\d{3})*(?:\.\d{2})?)\s*(?:dollar|usd|million|billion)",
            r"(\d+(?:\.\d+)?)\s*%",
        ]
        for pattern in amount_patterns:
            matches = re.findall(pattern, text_clean, re.IGNORECASE)
            entities["amounts"].extend(matches)

        # Extract policy types
        for policy_type, keywords in self.policy_indicators.items():
            if any(keyword in text_clean for keyword in keywords):
                entities["policy_types"].append(policy_type)

        return entities

    def calculate_sentiment_score(self, text: str) -> float:
        """Calculate basic sentiment score for policy text"""
        # Simplified sentiment analysis based on word lists
        positive_words = [
            "benefit",
            "growth",
            "increase",
            "improve",
            "support",
            "enhance",
            "strengthen",
            "boost",
            "advantage",
            "opportunity",
        ]

        negative_words = [
            "tariff",
            "penalty",
            "restriction",
            "ban",
            "limit",
            "reduce",
            "decrease",
            "harm",
            "damage",
            "threat",
            "sanction",
            "retaliation",
            "dispute",
            "conflict",
        ]

        neutral_words = [
            "policy",
            "measure",
            "regulation",
            "standard",
            "procedure",
            "implement",
            "establish",
            "maintain",
            "review",
            "monitor",
        ]

        text_clean = self.clean_text(text)
        words = text_clean.split()

        positive_count = sum(1 for word in words if word in positive_words)
        negative_count = sum(1 for word in words if word in negative_words)
        neutral_count = sum(1 for word in words if word in neutral_words)

        total_sentiment_words = positive_count + negative_count + neutral_count

        if total_sentiment_words == 0:
            return 0.0

        # Normalize to -1 to 1 scale
        sentiment_score = (positive_count - negative_count) / total_sentiment_words
        return max(-1.0, min(1.0, sentiment_score))

    def extract_numerical_features(self, text: str) -> Dict[str, float]:
        """Extract numerical features from text for ML models"""
        text_clean = self.clean_text(text)

        features = {
            "text_length": len(text),
            "word_count": len(text_clean.split()),
            "sentence_count": len([s for s in re.split(r"[.!?]+", text) if s.strip()]),
            "avg_word_length": (
                np.mean([len(word) for word in text_clean.split()])
                if text_clean.split()
                else 0
            ),
            "punctuation_ratio": (
                sum(1 for char in text if char in ".,;:!?") / len(text) if text else 0
            ),
            "uppercase_ratio": (
                sum(1 for char in text if char.isupper()) / len(text) if text else 0
            ),
            "digit_ratio": (
                sum(1 for char in text if char.isdigit()) / len(text) if text else 0
            ),
            "urgency_score": self._calculate_urgency_score(text_clean),
            "sentiment_score": self.calculate_sentiment_score(text),
            "entity_density": self._calculate_entity_density(text),
        }

        return features

    def _calculate_urgency_score(self, text: str) -> float:
        """Calculate urgency score based on keyword patterns"""
        urgency_count = 0
        for pattern in self.urgency_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            urgency_count += len(matches)

        # Normalize by text length
        words = text.split()
        if not words:
            return 0.0

        return min(urgency_count / len(words) * 100, 1.0)

    def _calculate_entity_density(self, text: str) -> float:
        """Calculate entity density in text"""
        entities = self.extract_entities(text)
        total_entities = sum(len(entity_list) for entity_list in entities.values())

        words = text.split()
        if not words:
            return 0.0

        return total_entities / len(words)

    def identify_policy_scope(self, text: str) -> Dict[str, Any]:
        """Identify the scope and impact level of a policy"""
        text_clean = self.clean_text(text)
        entities = self.extract_entities(text)

        scope_indicators = {
            "bilateral": ["between", "bilateral", "two countries", "agreement with"],
            "multilateral": ["multilateral", "multiple countries", "wto", "regional"],
            "unilateral": ["unilateral", "impose", "implement", "domestic"],
            "global": ["global", "worldwide", "international", "all countries"],
        }

        scope_scores = {}
        for scope_type, indicators in scope_indicators.items():
            score = sum(1 for indicator in indicators if indicator in text_clean)
            scope_scores[scope_type] = score

        # Determine primary scope
        primary_scope = (
            max(scope_scores.items(), key=lambda x: x[1])[0]
            if any(scope_scores.values())
            else "unknown"
        )

        return {
            "primary_scope": primary_scope,
            "scope_scores": scope_scores,
            "affected_countries": entities["countries"],
            "policy_types": entities["policy_types"],
            "confidence": (
                max(scope_scores.values()) / sum(scope_scores.values())
                if sum(scope_scores.values()) > 0
                else 0
            ),
        }

    def parse_policy_timeline(self, text: str) -> List[Dict[str, Any]]:
        """Parse timeline information from policy text"""
        timeline_patterns = [
            (
                r"effective\s+(?:from\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})",
                "effective_date",
            ),
            (r"expires?\s+(?:on\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})", "expiry_date"),
            (r"review\s+(?:on\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})", "review_date"),
            (r"(?:within\s+)?(\d+)\s+(?:days?|months?|years?)", "duration"),
            (r"immediate(?:ly)?", "immediate"),
        ]

        timeline_events = []
        for pattern, event_type in timeline_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            for match in matches:
                timeline_events.append(
                    {
                        "type": event_type,
                        "value": match,
                        "text_position": text.lower().find(match.lower()),
                    }
                )

        # Sort by position in text
        timeline_events.sort(key=lambda x: x["text_position"])

        return timeline_events


def extract_policy_triggers(text: str) -> Any:
    """Extract policy triggers from text (stub)."""
    logging.info(f"Extracting policy triggers from text: {text[:30]}...")
    # Placeholder for actual implementation
    return None