File size: 15,121 Bytes
80a1730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import argparse
import logging
import math
from dataclasses import dataclass
from typing import List, Any, Union, Optional
import torch
import ujson
from accelerate import Accelerator
from accelerate.utils import set_seed
from torch import nn, Tensor
from torch.nn import functional as F
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler
from tqdm.auto import tqdm
from transformers import get_scheduler, AutoTokenizer, AutoModel, AdamW, SchedulerType, PreTrainedTokenizerBase, AutoModelForSequenceClassification, BatchEncoding
from transformers.file_utils import PaddingStrategy
logger = logging.getLogger(__name__)
def get_parser():
parser = argparse.ArgumentParser(description="Train LFQA retriever")
parser.add_argument(
"--dpr_input_file",
type=str,
help="DPR formatted input file with question/positive/negative pairs in a JSONL file",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=32,
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=32,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
)
parser.add_argument(
"--pretrained_model_name",
type=str,
default="sentence-transformers/all-MiniLM-L6-v2",
)
parser.add_argument(
"--ce_model_name",
type=str,
default="cross-encoder/ms-marco-MiniLM-L-6-v2",
)
parser.add_argument(
"--model_save_name",
type=str,
default="eli5_retriever_model_l-12_h-768_b-512-512",
)
parser.add_argument(
"--learning_rate",
type=float,
default=2e-5,
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
)
parser.add_argument(
"--log_freq",
type=int,
default=500,
help="Log train/validation loss every log_freq update steps"
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=4,
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear", # this is linear with warmup
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=100,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--warmup_percentage",
type=float,
default=0.08,
help="Number of steps for the warmup in the lr scheduler."
)
return parser
@dataclass
class InputExample:
guid: str = ""
texts: List[str] = None
label: Union[int, float] = 0
class DPRDataset(Dataset):
"""
Dataset DPR format of question, answers, positive, negative, and hard negative passages
See https://github.com/facebookresearch/DPR#retriever-input-data-format for more details
"""
def __init__(self, file_path: str, include_all_positive: bool = False) -> None:
super().__init__()
with open(file_path, "r") as fp:
self.data = []
def dpr_example_to_input_example(idx, dpr_item):
examples = []
for p_idx, p_item in enumerate(dpr_item["positive_ctxs"]):
for n_idx, n_item in enumerate(dpr_item["negative_ctxs"]):
examples.append(InputExample(guid=[idx, p_idx, n_idx], texts=[dpr_item["question"],
p_item["text"],
n_item["text"]]))
if not include_all_positive:
break
return examples
for idx, line in enumerate(fp):
self.data.extend(dpr_example_to_input_example(idx, ujson.loads(line)))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def dpr_collate_fn(batch):
query_id, pos_id, neg_id = zip(*[example.guid for example in batch])
query, pos, neg = zip(*[example.texts for example in batch])
return (query_id, pos_id, neg_id), (query, pos, neg)
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
@dataclass
class CrossEncoderCollator:
tokenizer: PreTrainedTokenizerBase
model: Any
target_tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, batch):
query_id, pos_id, neg_id = zip(*[example.guid for example in batch])
query, pos_passage, neg_passage = zip(*[example.texts for example in batch])
batch_input: List[List[str]] = list(zip(query, pos_passage)) + list(zip(query, neg_passage))
features = self.tokenizer(batch_input, padding=self.padding, truncation=True,
return_tensors=self.return_tensors)
with torch.no_grad():
scores = self.model(**features).logits
labels = scores[:len(query)] - scores[len(query):]
batch_input: List[str] = list(query) + list(pos_passage) + list(neg_passage)
#breakpoint()
encoded_input = self.target_tokenizer(batch_input, padding=True, truncation=True,
max_length=256, return_tensors='pt')
encoded_input["labels"] = labels
return encoded_input
class RetrievalQAEmbedder(torch.nn.Module):
def __init__(self, sent_encoder, sent_tokenizer, batch_size:int = 32):
super(RetrievalQAEmbedder, self).__init__()
dim = sent_encoder.config.hidden_size
self.model = sent_encoder
self.tokenizer = sent_tokenizer
self.scale = 1
self.similarity_fct = 'dot'
self.batch_size = 32
self.loss_fct = nn.MSELoss()
def forward(self, examples: BatchEncoding):
# Tokenize sentences
labels = examples.pop("labels")
# Compute token embeddings
model_output = self.model(**examples)
examples["labels"] = labels
# Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, examples['attention_mask'])
target_shape = (3, self.batch_size, sentence_embeddings.shape[-1])
sentence_embeddings_reshaped = torch.reshape(sentence_embeddings, target_shape)
#breakpoint()
embeddings_query = sentence_embeddings_reshaped[0]
embeddings_pos = sentence_embeddings_reshaped[1]
embeddings_neg = sentence_embeddings_reshaped[2]
if self.similarity_fct == 'cosine':
embeddings_query = F.normalize(embeddings_query, p=2, dim=1)
embeddings_pos = F.normalize(embeddings_pos, p=2, dim=1)
embeddings_neg = F.normalize(embeddings_neg, p=2, dim=1)
scores_pos = (embeddings_query * embeddings_pos).sum(dim=-1) * self.scale
scores_neg = (embeddings_query * embeddings_neg).sum(dim=-1) * self.scale
margin_pred = scores_pos - scores_neg
#breakpoint()
return self.loss_fct(margin_pred, labels.squeeze())
def evaluate_qa_retriever(model, data_loader):
# make iterator
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
tot_loss = 0.0
with torch.no_grad():
for step, batch in enumerate(epoch_iterator):
q_ids, q_mask, a_ids, a_mask = batch
loss = model(q_ids, q_mask, a_ids, a_mask)
tot_loss += loss.item()
return tot_loss / (step + 1)
def train(config):
set_seed(42)
args = config["args"]
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
logger.info(accelerator.state)
# prepare torch Dataset objects
train_dataset = DPRDataset(file_path=args.dpr_input_file)
valid_dataset = Dataset()
base_tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
base_model = AutoModel.from_pretrained(args.pretrained_model_name)
ce_tokenizer = AutoTokenizer.from_pretrained(args.ce_model_name)
ce_model = AutoModelForSequenceClassification.from_pretrained(args.ce_model_name)
_ = ce_model.eval()
model = RetrievalQAEmbedder(base_model, base_tokenizer)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
cec = CrossEncoderCollator(model=ce_model, tokenizer=ce_tokenizer, target_tokenizer=base_tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
sampler=RandomSampler(train_dataset), collate_fn=cec)
eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size,
sampler=SequentialSampler(valid_dataset), collate_fn=cec)
# train the model
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer,
train_dataloader, eval_dataloader)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
args.warmup_percentage)
scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
logger.info(f" Warmup steps = {num_warmup_steps}")
logger.info(f" Logging training progress every {args.log_freq} optimization steps")
loc_loss = 0.0
current_loss = 0.0
checkpoint_step = 0
completed_steps = checkpoint_step
progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step,
disable=not accelerator.is_local_main_process)
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader, start=checkpoint_step):
# model inputs
pre_loss = model(batch)
loss = pre_loss / args.gradient_accumulation_steps
accelerator.backward(loss)
loc_loss += loss.item()
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
current_loss = loc_loss
optimizer.step()
scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
progress_bar.set_postfix(loss=loc_loss)
loc_loss = 0
completed_steps += 1
if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
# accelerator.wait_for_everyone()
# unwrapped_model = accelerator.unwrap_model(model)
# eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
eval_loss = 0
logger.info(f"Train loss {current_loss} , eval loss {eval_loss}")
if args.wandb and accelerator.is_local_main_process:
import wandb
wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps})
if completed_steps >= args.max_train_steps:
break
logger.info("Saving model {}".format(args.model_save_name))
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss))
if __name__ == "__main__":
parser = get_parser()
parser.add_argument(
"--wandb",
action="store_true",
help="Whether to use W&B logging",
)
main_args, _ = parser.parse_known_args()
config = {"args": main_args}
if main_args.wandb:
import wandb
wandb.init(project="Retriever")
train(config=config)
|