theCuiCoders's picture
End of training
68b1606 verified
|
raw
history blame
1.9 kB
metadata
language:
  - nl
license: apache-2.0
base_model: bert-base-uncased
tags:
  - abc
  - generated_from_trainer
datasets:
  - stsb_multi_mt
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-FinedTuned
    results: []

bert-base-uncased-FinedTuned

This model is a fine-tuned version of bert-base-uncased on the stsb_multi_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9242
  • Accuracy: 0.1762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8079 5.5556 1000 2.6347 0.1762
0.6349 11.1111 2000 2.8882 0.1762
0.3961 16.6667 3000 2.9309 0.1762
0.3026 22.2222 4000 2.9788 0.1762
0.2523 27.7778 5000 2.9326 0.1762
0.3039 33.3333 6000 2.9242 0.1762

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1