metadata
language:
- nl
license: apache-2.0
base_model: bert-base-uncased
tags:
- abc
- generated_from_trainer
datasets:
- stsb_multi_mt
model-index:
- name: bert-base-uncased-FinedTuned
results: []
bert-base-uncased-FinedTuned
This model is a fine-tuned version of bert-base-uncased on the stsb_multi_mt dataset. It achieves the following results on the evaluation set:
- Loss: 2.7638
- Pearson: 0.2339
- Mse: 2.7638
- Custom Accuracy: 0.2603
- Dataset Accuracy: 0.1762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 12000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Pearson | Mse | Custom Accuracy | Dataset Accuracy |
---|---|---|---|---|---|---|---|
0.0219 | 5.5556 | 1000 | 2.8140 | 0.2324 | 2.8140 | 0.2437 | 0.1762 |
0.0195 | 11.1111 | 2000 | 2.9679 | 0.2078 | 2.9679 | 0.2618 | 0.1762 |
0.0184 | 16.6667 | 3000 | 2.7712 | 0.2476 | 2.7712 | 0.2683 | 0.1762 |
0.0213 | 22.2222 | 4000 | 2.7564 | 0.2486 | 2.7564 | 0.2661 | 0.1762 |
0.0222 | 27.7778 | 5000 | 2.8691 | 0.2333 | 2.8691 | 0.2596 | 0.1762 |
0.0151 | 33.3333 | 6000 | 2.7762 | 0.2451 | 2.7762 | 0.2560 | 0.1762 |
0.0318 | 38.8889 | 7000 | 2.8121 | 0.2370 | 2.8121 | 0.2647 | 0.1762 |
0.0616 | 44.4444 | 8000 | 2.8343 | 0.2195 | 2.8343 | 0.2560 | 0.1762 |
0.0335 | 50.0 | 9000 | 2.8070 | 0.2259 | 2.8070 | 0.2676 | 0.1762 |
0.0553 | 55.5556 | 10000 | 2.7934 | 0.2330 | 2.7934 | 0.2531 | 0.1762 |
0.0718 | 61.1111 | 11000 | 2.7822 | 0.2286 | 2.7822 | 0.2603 | 0.1762 |
0.1741 | 66.6667 | 12000 | 2.7638 | 0.2339 | 2.7638 | 0.2603 | 0.1762 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1