theCuiCoders's picture
End of training
ed62a2a verified
|
raw
history blame
2.41 kB
metadata
language:
  - nl
license: apache-2.0
base_model: bert-base-uncased
tags:
  - abc
  - generated_from_trainer
datasets:
  - stsb_multi_mt
model-index:
  - name: bert-base-uncased-FinedTuned
    results: []

bert-base-uncased-FinedTuned

This model is a fine-tuned version of bert-base-uncased on the stsb_multi_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7197
  • Pearson: 0.2346
  • Mse: 2.7197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Pearson Mse
0.051 5.5556 1000 2.8182 0.2432 2.8182
0.0623 11.1111 2000 2.8367 0.2164 2.8367
0.0471 16.6667 3000 2.7305 0.2126 2.7305
0.0357 22.2222 4000 2.6918 0.2324 2.6918
0.032 27.7778 5000 2.7902 0.2379 2.7902
0.0793 33.3333 6000 2.7368 0.2480 2.7368
0.0775 38.8889 7000 2.6499 0.2382 2.6499
0.0728 44.4444 8000 2.6974 0.2368 2.6974
0.0596 50.0 9000 2.7313 0.2302 2.7313
0.1012 55.5556 10000 2.7291 0.2332 2.7291
0.0644 61.1111 11000 2.7338 0.2315 2.7338
0.1595 66.6667 12000 2.7197 0.2346 2.7197

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1