metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-weldclassifyv3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.920863309352518
vit-weldclassifyv3
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2671
- Accuracy: 0.9209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8398 | 0.6410 | 100 | 1.0312 | 0.5036 |
0.5613 | 1.2821 | 200 | 0.7068 | 0.6619 |
0.4296 | 1.9231 | 300 | 0.4008 | 0.8309 |
0.3475 | 2.5641 | 400 | 0.3345 | 0.8813 |
0.1183 | 3.2051 | 500 | 0.4293 | 0.8489 |
0.1531 | 3.8462 | 600 | 0.2748 | 0.9137 |
0.1174 | 4.4872 | 700 | 0.3649 | 0.8813 |
0.0498 | 5.1282 | 800 | 0.3279 | 0.8921 |
0.0817 | 5.7692 | 900 | 0.2763 | 0.9353 |
0.0075 | 6.4103 | 1000 | 0.2671 | 0.9209 |
0.0265 | 7.0513 | 1100 | 0.3185 | 0.9209 |
0.0457 | 7.6923 | 1200 | 0.3776 | 0.9101 |
0.0032 | 8.3333 | 1300 | 0.2835 | 0.9388 |
0.0027 | 8.9744 | 1400 | 0.5365 | 0.8885 |
0.0024 | 9.6154 | 1500 | 0.2817 | 0.9460 |
0.0021 | 10.2564 | 1600 | 0.2890 | 0.9460 |
0.002 | 10.8974 | 1700 | 0.2934 | 0.9460 |
0.0019 | 11.5385 | 1800 | 0.2976 | 0.9460 |
0.0018 | 12.1795 | 1900 | 0.2996 | 0.9460 |
0.0018 | 12.8205 | 2000 | 0.3006 | 0.9460 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1