vit-weld-classify / README.md
th041's picture
🍻 cheers
d2d9a44 verified
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-weld-classify
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6894977168949772
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-weld-classify
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7966
- Accuracy: 0.6895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.8686 | 0.8130 | 100 | 0.7966 | 0.6895 |
| 0.6935 | 1.6260 | 200 | 1.2217 | 0.5068 |
| 0.4225 | 2.4390 | 300 | 0.9592 | 0.6210 |
| 0.2586 | 3.2520 | 400 | 1.3123 | 0.5936 |
| 0.237 | 4.0650 | 500 | 0.8075 | 0.6986 |
| 0.2658 | 4.8780 | 600 | 1.0878 | 0.6210 |
| 0.1904 | 5.6911 | 700 | 1.1048 | 0.7169 |
| 0.0964 | 6.5041 | 800 | 1.3602 | 0.6849 |
| 0.0474 | 7.3171 | 900 | 1.1331 | 0.7671 |
| 0.1179 | 8.1301 | 1000 | 1.1228 | 0.7306 |
| 0.0447 | 8.9431 | 1100 | 1.2609 | 0.7397 |
| 0.0043 | 9.7561 | 1200 | 1.1746 | 0.7763 |
| 0.1059 | 10.5691 | 1300 | 1.1867 | 0.7763 |
| 0.0026 | 11.3821 | 1400 | 1.2890 | 0.7534 |
| 0.0039 | 12.1951 | 1500 | 1.3283 | 0.7580 |
| 0.002 | 13.0081 | 1600 | 1.1871 | 0.7671 |
| 0.0019 | 13.8211 | 1700 | 1.1643 | 0.7900 |
| 0.0264 | 14.6341 | 1800 | 1.1537 | 0.7900 |
| 0.0015 | 15.4472 | 1900 | 1.1821 | 0.7945 |
| 0.0015 | 16.2602 | 2000 | 1.1962 | 0.7900 |
| 0.0014 | 17.0732 | 2100 | 1.2036 | 0.7900 |
| 0.0014 | 17.8862 | 2200 | 1.2067 | 0.7900 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1