File size: 2,615 Bytes
4b545c8 7017d79 fca30d6 4b545c8 7017d79 4b545c8 7017d79 4b545c8 7017d79 4b545c8 fc09132 4b545c8 fc09132 4b545c8 7017d79 4b545c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: peft
base_model: meta-math/MetaMath-Mistral-7B
license: apache-2.0
pipeline_tag: text2text-generation
language:
- en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Timofej Kiselev (tfshaman)
- **Model type:** Mistral finetuned for solving MWPs using symbolic expressions with SymPy
- **Language(s) (NLP):** English, Python with SymPy
- **License:** Apache-2.0
- **Finetuned from model [optional]:** meta-math/MetaMath-Mistral-7B
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** https://dspace.cvut.cz/bitstream/handle/10467/115466/F3-BP-2024-Kiselev-Timofej-Thesis_Timofej_Kiselev.pdf
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
Input format:
f"Question {your_math_word_problem}\n\nAnswer: "
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
config = PeftConfig.from_pretrained("tfshaman/SymPy-Mistral")
base_model = AutoModelForCausalLM.from_pretrained("meta-math/MetaMath-Mistral-7B", quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained("tfshaman/SymPy-Mistral-tokenizer", use_fast=False, padding_side="left")
base_model.resize_token_embeddings(len(tokenizer))
tokenizer.pad_token = "<s>"
tokenizer.padding_side='left'
model = PeftModel.from_pretrained(base_model, "tfshaman/SymPy-Mistral", quantization_config=bnb_config)
model = model.to("cuda")
```
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
@mastersthesis{timofej2024velke,
title={Velk{\'e} jazykov{\'e} modely pro numerick{\'e} dotazy},
author={Timofej, Kiselev},
type={{B.S.} thesis},
year={2024},
school={{\v{C}}esk{\'e} vysok{\'e} u{\v{c}}en{\'\i} technick{\'e} v Praze. Vypo{\v{c}}etn{\'\i} a informa{\v{c}}n{\'\i} centrum.}
}
### Framework versions
- PEFT 0.7.1 |