File size: 1,786 Bytes
58c6c62 6e0ba11 58c6c62 6e0ba11 58c6c62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
tags:
- speech
- audio
- lang-id
- langid
---
# Conformer based spoken language identification model
## Summary
This is a conformer-based streaming language identification model with attentive temporal pooling.
The model was trained with public data only.
The paper: https://arxiv.org/abs/2202.12163
```
@inproceedings{wang2022attentive,
title={Attentive Temporal Pooling for Conformer-based Streaming Language Identification in Long-form Speech},
author={Quan Wang and Yang Yu and Jason Pelecanos and Yiling Huang and Ignacio Lopez Moreno},
booktitle={Odyssey: The Speaker and Language Recognition Workshop},
year={2022}
}
```
## Usage
Run use this model, you will need to use the `siglingvo` library: https://github.com/google/speaker-id/tree/master/lingvo
Since lingvo does not support Python 3.11 yet, make sure your Python is up to 3.10.
Install the library:
```
pip install sidlingvo
```
Example usage:
```Python
import os
from sidlingvo import wav_to_lang
from huggingface_hub import hf_hub_download
repo_id = "tflite-hub/conformer-lang-id"
model_path = "models"
hf_hub_download(repo_id=repo_id, filename="vad_short_model.tflite", local_dir=model_path)
hf_hub_download(repo_id=repo_id, filename="vad_short_mean_stddev.csv", local_dir=model_path)
hf_hub_download(repo_id=repo_id, filename="conformer_langid_medium.tflite", local_dir=model_path)
wav_file = "your_wav_file.wav"
runner = wav_to_lang.WavToLangRunner(
vad_model_file=os.path.join(model_path, "vad_short_model.tflite"),
vad_mean_stddev_file=os.path.join(model_path, "vad_short_mean_stddev.csv"),
langid_model_file=os.path.join(model_path, "conformer_langid_medium.tflite"))
top_lang, _ = runner.wav_to_lang(wav_file)
print("Predicted language:", top_lang)
``` |