metadata
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
To access Gemma on Hugging Face, you’re required to review and agree to
Google’s usage license. To do this, please ensure you’re logged in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
tags:
- mlx
base_model: google/gemma-2-9b
testmoto/gemma-2-9b-lora-0
The Model testmoto/gemma-2-9b-lora-0 was converted to MLX format from google/gemma-2-9b using mlx-lm version 0.20.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("testmoto/gemma-2-9b-lora-0")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)