gemma-2-9b-lora-0 / README.md
testmoto's picture
fd5222ebbbe9fb41d861476675ec665eb79a5e2db21a1c586b09e1a00f1aab12
e953ae7 verified
|
raw
history blame
1.2 kB
metadata
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
tags:
  - mlx
base_model: google/gemma-2-9b

testmoto/gemma-2-9b-lora-0

The Model testmoto/gemma-2-9b-lora-0 was converted to MLX format from google/gemma-2-9b using mlx-lm version 0.20.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("testmoto/gemma-2-9b-lora-0")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)