File size: 3,311 Bytes
e82c80b a85cfa3 c3d7593 e82c80b c3d7593 3846d09 e82c80b c3d7593 e82c80b a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 c3d7593 a85cfa3 6d5220c a85cfa3 03f6b3d e82c80b 03f6b3d c3d7593 a85cfa3 e82c80b a85cfa3 c3d7593 a85cfa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
language:
- en
- ms
- zh
tags:
- sentiment-analysis
- text-classification
- multilingual
license: apache-2.0
datasets:
- tyqiangz/multilingual-sentiments
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-sentiment-multilingual-finetuned
results:
- task:
type: text-classification
name: Text Classification
dataset:
type: tyqiangz/multilingual-sentiments
name: Multilingual Sentiments
metrics:
- type: accuracy
value: 0.7528205128205128
Baseline Scores:
Classification Report:
Negative:
Precision: 0.6153
Recall: 0.8292
F1-score: 0.7064
Support: 1680
Neutral:
Precision: 0.5381
Recall: 0.3035
F1-score: 0.3881
Support: 1443
Positive:
Precision: 0.7607
Recall: 0.7803
F1-score: 0.7704
Support: 1752
Metrics:
Accuracy:
Value: 0.6560
Support: 4875
Macro Avg:
Value: 0.6380
Support: 4875
Weighted Avg:
Value: 0.6447
Support: 4875
Finetuned Scores:
Classification Report:
Negative:
Precision: 0.7487
Recall: 0.7875
F1-score: 0.7676
Support: 1680
Neutral:
Precision: 0.6775
Recall: 0.6216
F1-score: 0.6484
Support: 1443
Positive:
Precision: 0.8128
Recall: 0.8276
F1-score: 0.8201
Support: 1752
Metrics:
Accuracy:
Value: 0.7528
Support: 4875
Macro Avg:
Value: 0.7463
Support: 4875
Weighted Avg:
Value: 0.7507
Support: 4875
---
# xlm-roberta-base-sentiment-multilingual-finetuned
## Model description
This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) model, trained on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese.
## Intended uses & limitations
This model is intended for sentiment analysis tasks in English, Malay, and Chinese. It can classify text into three sentiment categories: positive, negative, and neutral.
## Training and evaluation data
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset, which includes data in English, Malay, and Chinese.
## Training procedure
The model was fine-tuned using the Hugging Face Transformers library.
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=5,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
## Evaluation results
'eval_accuracy': 0.7528205128205128, 'eval_f1': 0.7511924805177581, 'eval_precision': 0.7506612130427309, 'eval_recall': 0.7528205128205128
## Test Score :
## Environmental impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|