whisper-base

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1952
  • Wer: 10.4439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2139 0.0833 5000 0.1884 16.6399
0.1146 0.1667 10000 0.1447 13.0148
0.0686 0.25 15000 0.1384 11.3586
0.0427 0.3333 20000 0.1471 11.4970
0.0274 0.4167 25000 0.1585 10.8926
0.0195 0.5 30000 0.1702 11.3447
0.0155 0.5833 35000 0.1773 10.6100
0.0126 1.0062 40000 0.1863 11.4255
0.0099 1.0895 45000 0.1929 10.6665
0.01 1.1729 50000 0.1933 10.6665
0.0085 1.2562 55000 0.1953 10.5224
0.0085 1.3395 60000 0.1952 10.4439

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
25
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ysdede/whisper-base

Finetuned
(393)
this model