test
This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5474
- Precision: 0.8890
- Recall: 0.9071
- F1: 0.8980
- Accuracy: 0.8665
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.33 | 100 | 0.5976 | 0.7412 | 0.8296 | 0.7829 | 0.8001 |
No log | 2.67 | 200 | 0.5019 | 0.8259 | 0.8698 | 0.8473 | 0.8269 |
No log | 4.0 | 300 | 0.4829 | 0.8701 | 0.8982 | 0.8839 | 0.8540 |
No log | 5.33 | 400 | 0.4490 | 0.8829 | 0.9141 | 0.8982 | 0.8725 |
0.5303 | 6.67 | 500 | 0.5120 | 0.8721 | 0.9046 | 0.8881 | 0.8574 |
0.5303 | 8.0 | 600 | 0.5212 | 0.8802 | 0.9011 | 0.8905 | 0.8644 |
0.5303 | 9.33 | 700 | 0.5447 | 0.8918 | 0.9086 | 0.9001 | 0.8559 |
0.5303 | 10.67 | 800 | 0.5304 | 0.8875 | 0.9056 | 0.8965 | 0.8713 |
0.5303 | 12.0 | 900 | 0.5496 | 0.8878 | 0.9081 | 0.8978 | 0.8630 |
0.1291 | 13.33 | 1000 | 0.5474 | 0.8890 | 0.9071 | 0.8980 | 0.8665 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vcliang/test
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on funsd-layoutlmv3test set self-reported0.889
- Recall on funsd-layoutlmv3test set self-reported0.907
- F1 on funsd-layoutlmv3test set self-reported0.898
- Accuracy on funsd-layoutlmv3test set self-reported0.867