shawgpt-ft

This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.5905 0.9231 3 3.9593
4.025 1.8462 6 3.4099
3.4125 2.7692 9 2.9152
2.1722 4.0 13 2.4169
2.4691 4.9231 16 2.1005
2.0548 5.8462 19 1.8257
1.7281 6.7692 22 1.6290
1.1606 8.0 26 1.4558
1.4189 8.9231 29 1.4021
1.3437 9.8462 32 1.3720
1.3363 10.7692 35 1.3524
0.9514 12.0 39 1.3344
1.2724 12.9231 42 1.3275
1.2308 13.8462 45 1.3237
1.2342 14.7692 48 1.3222
0.9248 16.0 52 1.3202
1.2053 16.9231 55 1.3195
1.1905 17.8462 58 1.3191

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for timewanderer/shawgpt-ft