distilbert-base-uncased-finetuned-sst2

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2842
  • Accuracy: 0.9071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.02 100 0.3316 0.8624
No log 0.05 200 0.3357 0.8612
No log 0.07 300 0.3996 0.8383
No log 0.1 400 0.3012 0.8716
0.3421 0.12 500 0.3227 0.8693
0.3421 0.14 600 0.3643 0.8727
0.3421 0.17 700 0.2734 0.8853
0.3421 0.19 800 0.3077 0.8945
0.3421 0.21 900 0.2709 0.9002
0.2705 0.24 1000 0.2737 0.8899
0.2705 0.26 1100 0.3079 0.8979
0.2705 0.29 1200 0.2713 0.8968
0.2705 0.31 1300 0.2505 0.8933
0.2705 0.33 1400 0.2932 0.8922
0.239 0.36 1500 0.2842 0.9071
0.239 0.38 1600 0.2509 0.9014
0.239 0.4 1700 0.2819 0.8853
0.239 0.43 1800 0.2515 0.8956

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
107
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for tillschwoerer/distilbert-base-uncased-finetuned-sst2

Finetuned
(7353)
this model

Dataset used to train tillschwoerer/distilbert-base-uncased-finetuned-sst2

Evaluation results