CNEC2_0_Supertypes_xlm-roberta-large

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2155
  • Precision: 0.8565
  • Recall: 0.8971
  • F1: 0.8763
  • Accuracy: 0.9709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4393 1.0 900 0.1671 0.7756 0.8195 0.7969 0.9590
0.1716 2.0 1800 0.1409 0.8155 0.8583 0.8364 0.9662
0.1326 3.0 2700 0.1288 0.8203 0.8748 0.8467 0.9687
0.1027 4.0 3600 0.1408 0.8290 0.8732 0.8505 0.9683
0.0891 5.0 4500 0.1447 0.8485 0.9000 0.8735 0.9725
0.0715 6.0 5400 0.1393 0.8561 0.8868 0.8712 0.9713
0.0644 7.0 6300 0.1586 0.8517 0.8918 0.8713 0.9702
0.0535 8.0 7200 0.1526 0.8481 0.8810 0.8643 0.9696
0.0492 9.0 8100 0.1795 0.8529 0.8984 0.8751 0.9702
0.0391 10.0 9000 0.1903 0.8536 0.8938 0.8733 0.9693
0.0323 11.0 9900 0.1885 0.8615 0.9046 0.8825 0.9724
0.0274 12.0 10800 0.2099 0.8585 0.9025 0.8800 0.9696
0.0237 13.0 11700 0.1944 0.8624 0.9009 0.8812 0.9720
0.0245 14.0 12600 0.2129 0.8618 0.8967 0.8789 0.9711
0.0206 15.0 13500 0.2155 0.8565 0.8971 0.8763 0.9709

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for stulcrad/CNEC2_0_Supertypes_xlm-roberta-large

Finetuned
(348)
this model

Evaluation results