finetune-led-thousanddata

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9539
  • Rouge1 Precision: 0.2722
  • Rouge1 Recall: 0.3458
  • Rouge1 Fmeasure: 0.3011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Fmeasure Rouge1 Precision Rouge1 Recall
2.0529 0.13 10 2.6191 0.3014 0.2948 0.324
1.778 0.26 20 2.4690 0.2947 0.2802 0.3213
1.7425 0.38 30 2.3989 0.3037 0.2734 0.3524
1.7006 0.51 40 2.3216 0.2941 0.2665 0.3386
1.6751 0.64 50 2.3027 0.3101 0.282 0.3551
1.6887 0.77 60 2.2911 0.3058 0.2731 0.3577
1.6008 0.89 70 2.2476 0.3016 0.272 0.3487
1.5767 1.02 80 2.2167 0.3043 0.2775 0.3465
1.5046 1.15 90 2.2185 0.3004 0.2721 0.3458
1.5394 1.28 100 2.1977 0.2991 0.2696 0.3463
1.5449 1.41 110 2.1823 0.2978 0.2704 0.341
1.5073 1.53 120 2.1832 0.3057 0.276 0.3527
1.5232 0.42 130 2.2091 0.2955 0.2664 0.3424
1.4896 0.45 140 2.2069 0.2905 0.2574 0.3424
1.4848 0.48 150 2.1913 0.2868 0.2567 0.3356
1.5084 0.51 160 2.1826 0.3006 0.2755 0.3406
1.4322 0.54 170 2.2525 0.3049 0.2716 0.3582
1.4672 0.58 180 2.1890 0.2919 0.2663 0.3322
1.4543 0.61 190 2.1487 0.3022 0.276 0.344
1.5446 0.64 200 2.1496 0.2993 0.273 0.3418
1.412 0.67 210 2.1837 0.2976 0.268 0.3439
1.5241 0.7 220 2.1423 0.2913 0.2665 0.3305
1.4806 0.74 230 2.1303 0.2997 0.2736 0.3411
1.5405 0.77 240 2.1205 0.2966 0.2668 0.3428
1.4287 0.8 250 2.1322 0.2976 0.268 0.3442
1.4977 0.83 260 2.1334 0.2979 0.2665 0.3477
1.4171 0.86 270 2.1184 0.3043 0.2741 0.3509
1.4491 0.9 280 2.1038 0.2868 0.2628 0.3253
1.4316 0.93 290 2.1254 0.2958 0.2678 0.3393
1.4689 0.96 300 2.1052 0.299 0.2685 0.3471
1.4347 0.99 310 2.0815 0.3019 0.273 0.3476
1.3285 1.02 320 2.0877 0.2981 0.2695 0.3427
1.2636 1.06 330 2.0740 0.2933 0.2645 0.3382
1.32 1.09 340 2.0755 0.2997 0.2689 0.3487
1.357 1.12 350 2.0594 0.301 0.2743 0.3434
1.3412 1.15 360 2.0660 0.2961 0.2677 0.3405
1.327 1.18 370 2.0649 0.2912 0.263 0.335
1.3193 1.22 380 2.0842 0.2952 0.2673 0.3392
1.2961 1.25 390 2.0749 0.2957 0.2705 0.3342
1.3093 1.28 400 2.0715 0.2997 0.272 0.3441
1.3403 1.31 410 2.0671 0.3119 0.2823 0.3584
1.3685 1.34 420 2.0580 0.2973 0.2695 0.3409
1.2913 1.38 430 2.0685 0.2926 0.2632 0.339
1.3796 1.41 440 2.0339 0.2962 0.2697 0.3387
1.354 1.44 450 2.0371 0.2953 0.2665 0.3412
1.3268 1.47 460 2.0309 0.2957 0.2681 0.3395
1.3706 1.5 470 2.0215 0.2932 0.2685 0.3315
1.3288 1.54 480 2.0044 0.2948 0.2674 0.3374
1.4102 1.57 490 2.0046 0.2998 0.271 0.3446
1.3952 1.6 500 2.0044 0.3063 0.2794 0.3487
1.2994 1.63 510 1.9993 0.3052 0.2787 0.3461
1.2948 1.66 520 2.0168 0.3 0.2743 0.3406
1.2972 1.7 530 2.0290 0.3003 0.2734 0.342
1.3181 1.73 540 2.0234 0.2949 0.2676 0.338
1.3505 1.76 550 1.9942 0.301 0.2737 0.3436
1.3163 1.79 560 1.9983 0.2963 0.2705 0.3366
1.2876 1.82 570 2.0206 0.303 0.2739 0.3486
1.2895 1.86 580 2.0131 0.2958 0.2652 0.3443
1.3257 1.89 590 1.9888 0.3022 0.2743 0.3455
1.2891 1.92 600 1.9928 0.2972 0.2694 0.3408
1.3152 1.95 610 1.9785 0.292 0.2653 0.334
1.2834 1.98 620 2.0105 0.3039 0.2735 0.3511
1.2373 2.02 630 2.0023 0.3019 0.2735 0.346
1.2569 2.05 640 2.0006 0.3029 0.2753 0.3463
1.2337 2.08 650 1.9919 0.3006 0.2746 0.3416
1.1274 2.11 660 2.0095 0.3015 0.2732 0.3457
1.2178 2.14 670 1.9974 0.3031 0.275 0.3475
1.22 2.18 680 1.9924 0.3059 0.2777 0.3501
1.2913 2.21 690 1.9880 0.3044 0.2745 0.351
1.2441 2.24 700 1.9886 0.299 0.2721 0.3412
1.3258 2.27 710 1.9772 0.2956 0.2686 0.3377
1.158 2.3 720 2.0003 0.2983 0.2702 0.3424
1.1908 2.34 730 1.9845 0.2975 0.2705 0.3398
1.2411 2.37 740 1.9768 0.304 0.275 0.3493
1.1936 2.4 750 2.0065 0.293 0.2628 0.3403
1.1578 2.44 760 2.0199 0.301 0.2713 0.3473
1.2086 2.47 770 1.9949 0.2921 0.2664 0.3323
1.2574 2.5 780 1.9806 0.297 0.2693 0.3405
1.2331 2.53 790 2.0100 0.3012 0.2733 0.3446
1.2522 2.56 800 1.9969 0.301 0.2716 0.3468
1.2508 2.6 810 1.9931 0.3016 0.2719 0.3471
1.1558 2.63 820 1.9873 0.2986 0.2725 0.3402
1.2721 2.66 830 1.9763 0.2988 0.2671 0.348
1.2817 2.69 840 1.9713 0.2961 0.2688 0.3388
1.2183 2.72 850 1.9783 0.2985 0.2709 0.3416
1.2278 2.76 860 1.9757 0.2964 0.2681 0.3402
1.2087 2.79 870 1.9818 0.304 0.2735 0.3516
1.1838 2.82 880 1.9845 0.2916 0.2659 0.3312
1.1185 2.85 890 1.9912 0.3044 0.2759 0.3492
1.1214 2.88 900 1.9838 0.2995 0.2692 0.3468
1.2341 2.92 910 1.9685 0.296 0.2713 0.3344
1.1808 2.95 920 1.9803 0.3008 0.2725 0.345
1.2843 2.98 930 1.9645 0.3041 0.2745 0.3504
1.1824 3.01 940 1.9750 0.2985 0.2713 0.3412
1.1399 3.04 950 1.9762 0.2943 0.264 0.3416
1.1347 3.08 960 1.9841 0.2971 0.2685 0.3419
1.2298 3.11 970 1.9526 0.2993 0.2701 0.3448
1.1731 3.14 980 1.9787 0.304 0.2726 0.3531
1.1819 3.17 990 1.9570 0.2995 0.2715 0.3437
1.2072 3.2 1000 1.9613 0.3004 0.2705 0.3472
1.1214 3.24 1010 1.9670 0.3 0.2723 0.3432
1.226 3.27 1020 1.9676 0.2945 0.2639 0.3422
1.1956 3.3 1030 1.9721 0.2949 0.2657 0.3406
1.2286 3.33 1040 1.9572 0.3046 0.2759 0.3489
1.1786 3.36 1050 1.9549 0.3009 0.2728 0.3448
1.1512 3.4 1060 1.9609 0.2989 0.2699 0.3441
1.1897 3.43 1070 1.9626 0.2983 0.2697 0.3427
1.187 3.46 1080 1.9612 0.3016 0.2731 0.3457
1.1394 3.49 1090 1.9519 0.3015 0.2746 0.3431
1.1088 3.52 1100 1.9674 0.301 0.2709 0.3477
1.1787 3.56 1110 1.9549 0.3009 0.2728 0.3449
1.1961 3.59 1120 1.9545 0.3016 0.2722 0.3476
1.1194 3.62 1130 1.9693 0.3028 0.2735 0.3484
1.1991 3.65 1140 1.9538 0.3002 0.2706 0.3461
1.2109 3.68 1150 1.9428 0.3018 0.2729 0.3465
1.1389 3.72 1160 1.9578 0.3008 0.2723 0.3452
1.1922 3.75 1170 1.9576 0.2992 0.2701 0.3446
1.1002 3.78 1180 1.9571 0.299 0.2696 0.3445
1.1407 3.81 1190 1.9530 0.2979 0.2692 0.3422
1.1882 3.84 1200 1.9491 0.3009 0.2725 0.345
1.1755 3.88 1210 1.9562 0.3024 0.2735 0.3468
1.062 3.91 1220 1.9577 0.302 0.2722 0.3478
1.1965 3.94 1230 1.9575 0.3013 0.2716 0.3472
1.1255 3.97 1240 1.9550 0.3014 0.272 0.3466

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.1
Downloads last month
10
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.