bart-cnn-samsum-peft

This model is a fine-tuned version of percymamedy/bart-cnn-samsum-finetuned on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1343

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.078 1.0 19 0.1347
0.0865 2.0 38 0.1346
0.0768 3.0 57 0.1345
0.0789 4.0 76 0.1344
0.0914 5.0 95 0.1344
0.0835 6.0 114 0.1343
0.0865 7.0 133 0.1343
0.0806 8.0 152 0.1343
0.0884 9.0 171 0.1343
0.0934 10.0 190 0.1343

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for percymamedy/bart-cnn-samsum-peft

Adapter
(1)
this model

Dataset used to train percymamedy/bart-cnn-samsum-peft