layoutlm-FUNSD-only-1fold

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6561
  • Eader: {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83}
  • Nswer: {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205}
  • Uestion: {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231}
  • Overall Precision: 0.4341
  • Overall Recall: 0.4759
  • Overall F1: 0.4540
  • Overall Accuracy: 0.7927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
1.2996 1.0 8 1.0787 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.0748502994011976, 'recall': 0.24390243902439024, 'f1': 0.11454753722794961, 'number': 205} {'precision': 0.0704647676161919, 'recall': 0.20346320346320346, 'f1': 0.10467706013363029, 'number': 231} 0.0727 0.1869 0.1046 0.6075
1.0224 2.0 16 0.8740 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.20823798627002288, 'recall': 0.44390243902439025, 'f1': 0.2834890965732087, 'number': 205} {'precision': 0.17551963048498845, 'recall': 0.329004329004329, 'f1': 0.2289156626506024, 'number': 231} 0.1920 0.3218 0.2405 0.7001
0.8193 3.0 24 0.6924 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.310126582278481, 'recall': 0.47804878048780486, 'f1': 0.3761996161228407, 'number': 205} {'precision': 0.25671641791044775, 'recall': 0.3722943722943723, 'f1': 0.30388692579505294, 'number': 231} 0.2759 0.3545 0.3103 0.7519
0.6764 4.0 32 0.6312 {'precision': 0.14285714285714285, 'recall': 0.04819277108433735, 'f1': 0.07207207207207209, 'number': 83} {'precision': 0.3914590747330961, 'recall': 0.5365853658536586, 'f1': 0.45267489711934156, 'number': 205} {'precision': 0.36, 'recall': 0.42857142857142855, 'f1': 0.391304347826087, 'number': 231} 0.3647 0.4104 0.3862 0.7634
0.5456 5.0 40 0.5856 {'precision': 0.3, 'recall': 0.18072289156626506, 'f1': 0.2255639097744361, 'number': 83} {'precision': 0.42424242424242425, 'recall': 0.5463414634146342, 'f1': 0.47761194029850745, 'number': 205} {'precision': 0.38022813688212925, 'recall': 0.4329004329004329, 'f1': 0.4048582995951417, 'number': 231} 0.3934 0.4374 0.4142 0.7846
0.4547 6.0 48 0.5899 {'precision': 0.4074074074074074, 'recall': 0.26506024096385544, 'f1': 0.32116788321167883, 'number': 83} {'precision': 0.44129554655870445, 'recall': 0.5317073170731708, 'f1': 0.4823008849557522, 'number': 205} {'precision': 0.35094339622641507, 'recall': 0.4025974025974026, 'f1': 0.37500000000000006, 'number': 231} 0.3958 0.4316 0.4129 0.7827
0.3815 7.0 56 0.5921 {'precision': 0.3888888888888889, 'recall': 0.25301204819277107, 'f1': 0.3065693430656934, 'number': 83} {'precision': 0.483739837398374, 'recall': 0.5804878048780487, 'f1': 0.5277161862527716, 'number': 205} {'precision': 0.34657039711191334, 'recall': 0.4155844155844156, 'f1': 0.3779527559055118, 'number': 231} 0.4090 0.4547 0.4307 0.7893
0.324 8.0 64 0.5872 {'precision': 0.5, 'recall': 0.26506024096385544, 'f1': 0.3464566929133859, 'number': 83} {'precision': 0.4957983193277311, 'recall': 0.5756097560975609, 'f1': 0.5327313769751693, 'number': 205} {'precision': 0.39543726235741444, 'recall': 0.45021645021645024, 'f1': 0.42105263157894735, 'number': 231} 0.4477 0.4701 0.4586 0.7989
0.284 9.0 72 0.6026 {'precision': 0.3968253968253968, 'recall': 0.30120481927710846, 'f1': 0.34246575342465757, 'number': 83} {'precision': 0.4717741935483871, 'recall': 0.5707317073170731, 'f1': 0.5165562913907285, 'number': 205} {'precision': 0.35789473684210527, 'recall': 0.44155844155844154, 'f1': 0.39534883720930236, 'number': 231} 0.4094 0.4701 0.4377 0.7897
0.249 10.0 80 0.6137 {'precision': 0.4423076923076923, 'recall': 0.27710843373493976, 'f1': 0.34074074074074073, 'number': 83} {'precision': 0.5041322314049587, 'recall': 0.5951219512195122, 'f1': 0.5458612975391499, 'number': 205} {'precision': 0.3607142857142857, 'recall': 0.43722943722943725, 'f1': 0.39530332681017616, 'number': 231} 0.4286 0.4740 0.4501 0.7981
0.2288 11.0 88 0.6367 {'precision': 0.38571428571428573, 'recall': 0.3253012048192771, 'f1': 0.35294117647058826, 'number': 83} {'precision': 0.48717948717948717, 'recall': 0.5560975609756098, 'f1': 0.5193621867881548, 'number': 205} {'precision': 0.38267148014440433, 'recall': 0.4588744588744589, 'f1': 0.4173228346456693, 'number': 231} 0.4251 0.4759 0.4491 0.7912
0.2031 12.0 96 0.6401 {'precision': 0.46, 'recall': 0.27710843373493976, 'f1': 0.3458646616541353, 'number': 83} {'precision': 0.497907949790795, 'recall': 0.5804878048780487, 'f1': 0.536036036036036, 'number': 205} {'precision': 0.3800738007380074, 'recall': 0.4458874458874459, 'f1': 0.4103585657370518, 'number': 231} 0.4375 0.4721 0.4541 0.7985
0.193 13.0 104 0.6539 {'precision': 0.37142857142857144, 'recall': 0.3132530120481928, 'f1': 0.33986928104575165, 'number': 83} {'precision': 0.5321100917431193, 'recall': 0.5658536585365853, 'f1': 0.5484633569739952, 'number': 205} {'precision': 0.3969465648854962, 'recall': 0.45021645021645024, 'f1': 0.4219066937119675, 'number': 231} 0.4473 0.4740 0.4602 0.7904
0.1895 14.0 112 0.6557 {'precision': 0.39344262295081966, 'recall': 0.2891566265060241, 'f1': 0.3333333333333333, 'number': 83} {'precision': 0.5429864253393665, 'recall': 0.5853658536585366, 'f1': 0.5633802816901408, 'number': 205} {'precision': 0.3916349809885932, 'recall': 0.4458874458874459, 'f1': 0.41700404858299595, 'number': 231} 0.4532 0.4759 0.4643 0.7904
0.1775 15.0 120 0.6561 {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83} {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205} {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231} 0.4341 0.4759 0.4540 0.7927

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
22
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pabloma09/layoutlm-FUNSD-only-1fold

Finetuned
(162)
this model