Text-to-image finetuning - nroggendorff/wikiart-diffusion
This pipeline was finetuned from nroggendorff/epicrealism on the nroggendorff/wikiart dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['image']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("nroggendorff/wikiart-diffusion", torch_dtype=torch.float16)
prompt = "image"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 2
- Learning rate: 0.0001
- Batch size: 16
- Gradient accumulation steps: 1
- Image resolution: 512
- Mixed-precision: fp16
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]
- Downloads last month
- 29
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nroggendorff/wikiart-diffusion
Base model
glides/epicrealism