SummarEaseElementaryV4

This model is a fine-tuned version of notBanana/SummarEaseElementaryV3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2757
  • Rouge1: 0.1334
  • Rouge2: 0.0545
  • Rougel: 0.115
  • Rougelsum: 0.1147
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 1 2.2787 0.1259 0.0521 0.1093 0.1098 20.0
No log 2.0 2 2.2686 0.125 0.0482 0.1055 0.106 20.0
No log 3.0 3 2.2718 0.1281 0.0482 0.1083 0.1086 20.0
No log 4.0 4 2.2757 0.1334 0.0545 0.115 0.1147 20.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
106
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for notBanana/SummarEaseElementaryV4

Finetuned
(1)
this model
Finetunes
1 model