whisper-medium-uk

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3673
  • Wer: 20.1065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1947 0.94 1000 0.2269 22.7263
0.1034 1.89 2000 0.2102 20.6058
0.0572 2.83 3000 0.2192 20.3908
0.0261 3.77 4000 0.2483 21.0204
0.0112 4.72 5000 0.2758 21.1480
0.0058 5.66 6000 0.3166 20.3270
0.0026 6.6 7000 0.3268 20.5877
0.0017 7.55 8000 0.3483 20.0455
0.0006 8.49 9000 0.3635 20.0996
0.0005 9.43 10000 0.3673 20.1065

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nikes64/whisper-medium-uk

Finetuned
(500)
this model

Dataset used to train nikes64/whisper-medium-uk

Evaluation results