bert-tiny-finetuned-pile-of-law-tos

This model is a MLM fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the pile-of-law/tos dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 264 3.5896
3.8119 2.0 528 3.5598
3.8119 3.0 792 3.5263
3.7028 4.0 1056 3.4982
3.7028 5.0 1320 3.5170
3.6286 6.0 1584 3.5143
3.6286 7.0 1848 3.4477
3.553 8.0 2112 3.4044
3.553 9.0 2376 3.4670
3.5179 10.0 2640 3.3991
3.5179 11.0 2904 3.4330
3.4784 12.0 3168 3.4671
3.4784 13.0 3432 3.3489
3.4535 14.0 3696 3.4354
3.4535 15.0 3960 3.4023

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.