Lightly ImageNet1k Benchmarks

LightlySSL self-supervised learning Logo

GitHub Discord

Note: Evaluation settings are based on these papers:

See the benchmarking scripts for details.

Model Backbone Batch Size Epochs Linear Top1 Finetune Top1 kNN Top1 Tensorboard Checkpoint
BarlowTwins Res50 256 100 62.9 72.6 45.6 link link
BYOL Res50 256 100 62.5 74.5 46.0 link link
DINO Res50 128 100 68.2 72.5 49.9 link link
MAE ViT-B/16 256 100 46.0 81.3 11.2 link link
MoCoV2 Res50 256 100 61.5 74.3 41.8 link link
SimCLR* Res50 256 100 63.2 73.9 44.8 link link
SimCLR* + DCL Res50 256 100 65.1 73.5 49.6 link link
SimCLR* + DCLW Res50 256 100 64.5 73.2 48.5 link link
SwAV Res50 256 100 67.2 75.4 49.5 link link
TiCo Res50 256 100 49.7 72.7 26.6 link link
VICReg Res50 256 100 63.0 73.7 46.3 link link

*We use square root learning rate scaling instead of linear scaling as it yields better results for smaller batch sizes. See Appendix B.1 in the SimCLR paper.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Collection including lightly-ai/in1k-benchmark-logs