AraElectra-finetuned-fnd
This model is a fine-tuned version of aubmindlab/araelectra-base-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6073
- Macro F1: 0.7629
- Accuracy: 0.7708
- Precision: 0.7646
- Recall: 0.7616
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 25
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5248 | 1.0 | 1597 | 0.4960 | 0.7416 | 0.7546 | 0.7508 | 0.7377 |
0.4308 | 2.0 | 3194 | 0.4770 | 0.7535 | 0.7666 | 0.7647 | 0.7490 |
0.3386 | 3.0 | 4791 | 0.5201 | 0.7614 | 0.7684 | 0.7617 | 0.7611 |
0.2781 | 4.0 | 6388 | 0.6073 | 0.7629 | 0.7708 | 0.7646 | 0.7616 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.