roberta-finetuned-ner-vi

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0009
  • Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39}
  • Loc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124}
  • Org: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59}
  • Per: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70}
  • Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79}
  • Product: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Date Loc Org Per Price Product Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 100 0.0346 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 0.957983193277311, 'recall': 0.9193548387096774, 'f1': 0.9382716049382716, 'number': 124} {'precision': 0.9622641509433962, 'recall': 0.864406779661017, 'f1': 0.9107142857142857, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 0.7647058823529411, 'recall': 1.0, 'f1': 0.8666666666666666, 'number': 13} 0.9708 0.9531 0.9619 0.9919
No log 2.0 200 0.0060 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 0.968, 'recall': 0.9758064516129032, 'f1': 0.9718875502008033, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 0.9896 0.9922 0.9909 0.9979
No log 3.0 300 0.0013 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0
No log 4.0 400 0.0010 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0
0.0878 5.0 500 0.0009 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
57
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for huy1211/roberta-finetuned-ner-vi

Finetuned
(693)
this model