bert_uncased_L-4_H-256_A-4_mrpc
This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5071
- Accuracy: 0.7721
- F1: 0.8394
- Combined Score: 0.8057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6375 | 1.0 | 15 | 0.6024 | 0.6936 | 0.8170 | 0.7553 |
0.594 | 2.0 | 30 | 0.5776 | 0.6985 | 0.8167 | 0.7576 |
0.5504 | 3.0 | 45 | 0.5475 | 0.7279 | 0.8274 | 0.7777 |
0.5155 | 4.0 | 60 | 0.5083 | 0.7598 | 0.8345 | 0.7971 |
0.4668 | 5.0 | 75 | 0.5116 | 0.7598 | 0.8345 | 0.7971 |
0.4292 | 6.0 | 90 | 0.5237 | 0.7696 | 0.8433 | 0.8065 |
0.3859 | 7.0 | 105 | 0.5071 | 0.7721 | 0.8394 | 0.8057 |
0.3455 | 8.0 | 120 | 0.5300 | 0.7721 | 0.8426 | 0.8073 |
0.3049 | 9.0 | 135 | 0.5408 | 0.7721 | 0.8410 | 0.8065 |
0.2735 | 10.0 | 150 | 0.5337 | 0.7745 | 0.8425 | 0.8085 |
0.2454 | 11.0 | 165 | 0.5962 | 0.7647 | 0.84 | 0.8024 |
0.2117 | 12.0 | 180 | 0.5756 | 0.7794 | 0.8469 | 0.8132 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_mrpc
Base model
google/bert_uncased_L-4_H-256_A-4Dataset used to train gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_mrpc
Evaluation results
- Accuracy on GLUE MRPCself-reported0.772
- F1 on GLUE MRPCself-reported0.839