Edit model card

t5-en-vi-small-ed-multi

This model is a fine-tuned version of NlpHUST/t5-en-vi-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 42.1043
  • F1 Micro: 0.0
  • Recall Micro: 0.0
  • Precision Micro: 0.0
  • F1 Macro: 0.0
  • Recall Macro: 0.0
  • Precision Macro: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro Recall Micro Precision Micro F1 Macro Recall Macro Precision Macro
No log 0.9987 393 42.1043 0.0 0.0 0.0 0.0 0.0 0.0
0.0 2.0 787 42.1043 0.0 0.0 0.0 0.0 0.0 0.0
0.0 2.9987 1180 42.1043 0.0 0.0 0.0 0.0 0.0 0.0
0.0 4.0 1574 42.1043 0.0 0.0 0.0 0.0 0.0 0.0
0.0 4.9936 1965 42.1043 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cuongpp/t5-en-vi-small-ed-multi

Finetuned
(2)
this model