UzbTTS
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5190
Model description
UZBTTS - bu asason 250 MB Text2Audio datasetga (microsoft/speecht5_tts) modeliga fine-tuned qilindi, natija datasetga yarasha yaxshi.
Agar siz buni modelni foydalanishini xoxlasangiz.
example:
#dastlab run qiling :
!pip install transformers datasets
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
processor = SpeechT5Processor.from_pretrained("ai-nightcoder/UZBTTS")
model = SpeechT5ForTextToSpeech.from_pretrained("ai-nightcoder/UZBTTS")
# ***************************************************************************
text = "O‘zbekistonda import qilingan sovitkich,
muzlatkich va konditsionerlarni energosamaradorlik bo‘yicha sinovdan o‘tkazish boshlandi.
Kun.uz'ga murojaat qilgan importchi tadbirkorlarga ko‘ra, bu yangilik ham vaqt,
ham naqd nuqtayi nazaridan yangi xarajatlarga olib kelgan.
Kelgusida bunday tekshiruv boshqa turdagi maishiy texnikalarga ham joriy etilishi kutilyapti."
inputs = processor(text=text, return_tensors="pt")
# ***************************************************************************
from datasets import load_dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
import torch
# voice clone uchun ham ishlatilsa bo'ladi.
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
from transformers import SpeechT5HifiGan
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# ****************************************************************************
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
from IPython.display import Audio
Audio(speech, rate=16000)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.479 | 137.93 | 1000 | 0.5174 |
| 0.4318 | 275.86 | 2000 | 0.5177 |
| 0.4111 | 413.79 | 3000 | 0.5302 |
| 0.4081 | 551.72 | 4000 | 0.5190 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for blackhole33/UZBTTS
Base model
microsoft/speecht5_tts