intit_model
This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2486
- Wer: 0.4348
- Cer: 0.9047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
0.9753 |
20.0 |
100 |
1.3804 |
0.5072 |
0.9054 |
0.5395 |
40.0 |
200 |
1.5495 |
0.4444 |
0.9062 |
0.3735 |
60.0 |
300 |
1.7729 |
0.4396 |
0.9056 |
0.2427 |
80.0 |
400 |
1.9016 |
0.4348 |
0.9063 |
0.2389 |
100.0 |
500 |
2.0569 |
0.4348 |
0.9061 |
0.1822 |
120.0 |
600 |
2.0684 |
0.4300 |
0.9050 |
0.1578 |
140.0 |
700 |
2.1332 |
0.4396 |
0.9049 |
0.1547 |
160.0 |
800 |
2.2138 |
0.4444 |
0.9047 |
0.1807 |
180.0 |
900 |
2.2467 |
0.4348 |
0.9047 |
0.1427 |
200.0 |
1000 |
2.2486 |
0.4348 |
0.9047 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0