interpro_bert_2
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 2048
- total_eval_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2702 | 1.0 | 14395 | 1.1699 |
0.9079 | 2.0 | 28790 | 0.8665 |
0.7738 | 3.0 | 43185 | 0.7505 |
0.6959 | 4.0 | 57580 | 0.6820 |
0.6327 | 5.0 | 71975 | 0.6302 |
0.5899 | 6.0 | 86370 | 0.5956 |
0.5462 | 7.0 | 100765 | 0.5654 |
0.5155 | 8.0 | 115160 | 0.5395 |
0.4836 | 9.0 | 129555 | 0.5149 |
0.4633 | 10.0 | 143950 | 0.4984 |
0.441 | 11.0 | 158345 | 0.4774 |
0.4212 | 12.0 | 172740 | 0.4641 |
0.404 | 13.0 | 187135 | 0.4479 |
0.3883 | 14.0 | 201530 | 0.4401 |
0.3781 | 15.0 | 215925 | 0.4333 |
Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 104