Edit model card

segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4530
  • Mean Iou: 0.0308
  • Mean Accuracy: 0.0934
  • Overall Accuracy: 0.3126
  • Per Category Iou: [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan]
  • Per Category Accuracy: [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
4.6085 1.0 20 4.4530 0.0308 0.0934 0.3126 [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan] [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan]

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train ArturR01/segformer-b0-scene-parse-150