dfmodel
This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0061
- Accuracy: 0.9984
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5468 | 0.0126 | 10 | 0.3332 | 0.9004 |
0.2523 | 0.0252 | 20 | 0.6204 | 0.8444 |
0.2843 | 0.0378 | 30 | 0.1581 | 0.9570 |
0.0499 | 0.0503 | 40 | 0.0812 | 0.9822 |
0.0571 | 0.0629 | 50 | 0.0928 | 0.9806 |
0.099 | 0.0755 | 60 | 0.0443 | 0.9923 |
0.0417 | 0.0881 | 70 | 0.0464 | 0.9893 |
0.0499 | 0.1007 | 80 | 0.3664 | 0.9331 |
0.131 | 0.1133 | 90 | 0.1152 | 0.9728 |
0.0675 | 0.1259 | 100 | 0.0706 | 0.9852 |
0.0234 | 0.1385 | 110 | 0.0436 | 0.9926 |
0.0237 | 0.1510 | 120 | 0.0701 | 0.9885 |
0.0221 | 0.1636 | 130 | 0.0958 | 0.9835 |
0.0296 | 0.1762 | 140 | 0.0269 | 0.9950 |
0.0224 | 0.1888 | 150 | 0.0791 | 0.9866 |
0.1075 | 0.2014 | 160 | 0.0421 | 0.9888 |
0.05 | 0.2140 | 170 | 0.0361 | 0.9918 |
0.0097 | 0.2266 | 180 | 0.0372 | 0.9931 |
0.0394 | 0.2392 | 190 | 0.0415 | 0.9920 |
0.0678 | 0.2517 | 200 | 0.0396 | 0.9912 |
0.0689 | 0.2643 | 210 | 0.0196 | 0.9965 |
0.0291 | 0.2769 | 220 | 0.0416 | 0.9923 |
0.0527 | 0.2895 | 230 | 0.0297 | 0.9947 |
0.0552 | 0.3021 | 240 | 0.0191 | 0.9964 |
0.0678 | 0.3147 | 250 | 0.0202 | 0.9967 |
0.0252 | 0.3273 | 260 | 0.0253 | 0.9945 |
0.077 | 0.3398 | 270 | 0.0221 | 0.9961 |
0.0202 | 0.3524 | 280 | 0.0306 | 0.9942 |
0.0559 | 0.3650 | 290 | 0.0178 | 0.9969 |
0.018 | 0.3776 | 300 | 0.0186 | 0.9964 |
0.0157 | 0.3902 | 310 | 0.0175 | 0.9962 |
0.0144 | 0.4028 | 320 | 0.0201 | 0.9959 |
0.0274 | 0.4154 | 330 | 0.0276 | 0.9937 |
0.0226 | 0.4280 | 340 | 0.0222 | 0.9958 |
0.0022 | 0.4405 | 350 | 0.0199 | 0.9962 |
0.0043 | 0.4531 | 360 | 0.0494 | 0.9912 |
0.0306 | 0.4657 | 370 | 0.0198 | 0.9959 |
0.0177 | 0.4783 | 380 | 0.0179 | 0.9964 |
0.0014 | 0.4909 | 390 | 0.0242 | 0.9959 |
0.0012 | 0.5035 | 400 | 0.0259 | 0.9959 |
0.0136 | 0.5161 | 410 | 0.0286 | 0.9956 |
0.0562 | 0.5287 | 420 | 0.0214 | 0.9962 |
0.0019 | 0.5412 | 430 | 0.0225 | 0.9958 |
0.0028 | 0.5538 | 440 | 0.0190 | 0.9964 |
0.0124 | 0.5664 | 450 | 0.0197 | 0.9965 |
0.0243 | 0.5790 | 460 | 0.0152 | 0.9972 |
0.0156 | 0.5916 | 470 | 0.0196 | 0.9951 |
0.0189 | 0.6042 | 480 | 0.0150 | 0.9964 |
0.0205 | 0.6168 | 490 | 0.0181 | 0.9956 |
0.0249 | 0.6294 | 500 | 0.0142 | 0.9961 |
0.0253 | 0.6419 | 510 | 0.0099 | 0.9975 |
0.0034 | 0.6545 | 520 | 0.0198 | 0.9959 |
0.0111 | 0.6671 | 530 | 0.0363 | 0.9935 |
0.0214 | 0.6797 | 540 | 0.0142 | 0.9964 |
0.0015 | 0.6923 | 550 | 0.0107 | 0.9975 |
0.0075 | 0.7049 | 560 | 0.0117 | 0.9972 |
0.0088 | 0.7175 | 570 | 0.0077 | 0.9981 |
0.015 | 0.7300 | 580 | 0.0094 | 0.9980 |
0.0141 | 0.7426 | 590 | 0.0076 | 0.9983 |
0.0097 | 0.7552 | 600 | 0.0084 | 0.9980 |
0.0132 | 0.7678 | 610 | 0.0072 | 0.9981 |
0.0009 | 0.7804 | 620 | 0.0096 | 0.9980 |
0.0003 | 0.7930 | 630 | 0.0122 | 0.9978 |
0.0003 | 0.8056 | 640 | 0.0131 | 0.9976 |
0.0267 | 0.8182 | 650 | 0.0112 | 0.9978 |
0.0006 | 0.8307 | 660 | 0.0120 | 0.9975 |
0.0207 | 0.8433 | 670 | 0.0075 | 0.9981 |
0.0183 | 0.8559 | 680 | 0.0051 | 0.9984 |
0.002 | 0.8685 | 690 | 0.0047 | 0.9987 |
0.0022 | 0.8811 | 700 | 0.0050 | 0.9991 |
0.0184 | 0.8937 | 710 | 0.0050 | 0.9987 |
0.0009 | 0.9063 | 720 | 0.0047 | 0.9989 |
0.003 | 0.9189 | 730 | 0.0047 | 0.9989 |
0.0005 | 0.9314 | 740 | 0.0062 | 0.9981 |
0.0102 | 0.9440 | 750 | 0.0076 | 0.9980 |
0.0063 | 0.9566 | 760 | 0.0079 | 0.9978 |
0.0148 | 0.9692 | 770 | 0.0069 | 0.9981 |
0.0173 | 0.9818 | 780 | 0.0065 | 0.9984 |
0.0099 | 0.9944 | 790 | 0.0061 | 0.9984 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.1.2
- Datasets 2.21.1.dev0
- Tokenizers 0.19.1
- Downloads last month
- 2