metadata
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
datasets:
- bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- TensorBlock
- GGUF
base_model: bigcode/starcoder2-3b
model-index:
- name: starcoder2-3b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 32.7
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 25
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 27.7
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 27.4
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 31.7
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 71.19
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
bigcode/starcoder2-3b - GGUF
This repo contains GGUF format model files for bigcode/starcoder2-3b.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
starcoder2-3b-Q2_K.gguf | Q2_K | 1.139 GB | smallest, significant quality loss - not recommended for most purposes |
starcoder2-3b-Q3_K_S.gguf | Q3_K_S | 1.273 GB | very small, high quality loss |
starcoder2-3b-Q3_K_M.gguf | Q3_K_M | 1.455 GB | very small, high quality loss |
starcoder2-3b-Q3_K_L.gguf | Q3_K_L | 1.618 GB | small, substantial quality loss |
starcoder2-3b-Q4_0.gguf | Q4_0 | 1.629 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
starcoder2-3b-Q4_K_S.gguf | Q4_K_S | 1.642 GB | small, greater quality loss |
starcoder2-3b-Q4_K_M.gguf | Q4_K_M | 1.758 GB | medium, balanced quality - recommended |
starcoder2-3b-Q5_0.gguf | Q5_0 | 1.964 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
starcoder2-3b-Q5_K_S.gguf | Q5_K_S | 1.964 GB | large, low quality loss - recommended |
starcoder2-3b-Q5_K_M.gguf | Q5_K_M | 2.031 GB | large, very low quality loss - recommended |
starcoder2-3b-Q6_K.gguf | Q6_K | 2.320 GB | very large, extremely low quality loss |
starcoder2-3b-Q8_0.gguf | Q8_0 | 3.003 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/starcoder2-3b-GGUF --include "starcoder2-3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/starcoder2-3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'