metadata
license: cc-by-nc-4.0
base_model: abideen/gemma-2b-openhermes
tags:
- generated_from_trainer
- axolotl
- gemma
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- TensorBlock
- GGUF
datasets:
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
language:
- en
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: gemma-2b-openhermes
results: []
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
abideen/gemma-2b-openhermes - GGUF
This repo contains GGUF format model files for abideen/gemma-2b-openhermes.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
gemma-2b-openhermes-Q2_K.gguf | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes |
gemma-2b-openhermes-Q3_K_S.gguf | Q3_K_S | 1.288 GB | very small, high quality loss |
gemma-2b-openhermes-Q3_K_M.gguf | Q3_K_M | 1.384 GB | very small, high quality loss |
gemma-2b-openhermes-Q3_K_L.gguf | Q3_K_L | 1.466 GB | small, substantial quality loss |
gemma-2b-openhermes-Q4_0.gguf | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
gemma-2b-openhermes-Q4_K_S.gguf | Q4_K_S | 1.560 GB | small, greater quality loss |
gemma-2b-openhermes-Q4_K_M.gguf | Q4_K_M | 1.630 GB | medium, balanced quality - recommended |
gemma-2b-openhermes-Q5_0.gguf | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
gemma-2b-openhermes-Q5_K_S.gguf | Q5_K_S | 1.799 GB | large, low quality loss - recommended |
gemma-2b-openhermes-Q5_K_M.gguf | Q5_K_M | 1.840 GB | large, very low quality loss - recommended |
gemma-2b-openhermes-Q6_K.gguf | Q6_K | 2.062 GB | very large, extremely low quality loss |
gemma-2b-openhermes-Q8_0.gguf | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/gemma-2b-openhermes-GGUF --include "gemma-2b-openhermes-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/gemma-2b-openhermes-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'