|
--- |
|
datasets: |
|
- bigscience/xP3 |
|
license: bigscience-bloom-rail-1.0 |
|
language: |
|
- ak |
|
- ar |
|
- as |
|
- bm |
|
- bn |
|
- ca |
|
- code |
|
- en |
|
- es |
|
- eu |
|
- fon |
|
- fr |
|
- gu |
|
- hi |
|
- id |
|
- ig |
|
- ki |
|
- kn |
|
- lg |
|
- ln |
|
- ml |
|
- mr |
|
- ne |
|
- nso |
|
- ny |
|
- or |
|
- pa |
|
- pt |
|
- rn |
|
- rw |
|
- sn |
|
- st |
|
- sw |
|
- ta |
|
- te |
|
- tn |
|
- ts |
|
- tum |
|
- tw |
|
- ur |
|
- vi |
|
- wo |
|
- xh |
|
- yo |
|
- zh |
|
- zu |
|
programming_language: |
|
- C |
|
- C++ |
|
- C# |
|
- Go |
|
- Java |
|
- JavaScript |
|
- Lua |
|
- PHP |
|
- Python |
|
- Ruby |
|
- Rust |
|
- Scala |
|
- TypeScript |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous |
|
review as positive, neutral or negative? |
|
example_title: zh-en sentiment |
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? |
|
example_title: zh-zh sentiment |
|
- text: Suggest at least five related search terms to "Mạng neural nhân tạo". |
|
example_title: vi-en query |
|
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». |
|
example_title: fr-fr query |
|
- text: Explain in a sentence in Telugu what is backpropagation in neural networks. |
|
example_title: te-en qa |
|
- text: Why is the sky blue? |
|
example_title: en-en qa |
|
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. |
|
The fairy tale is a masterpiece that has achieved praise worldwide and its moral |
|
is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' |
|
example_title: es-en fable |
|
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded |
|
by ogres. The fable is a masterpiece that has achieved praise worldwide and its |
|
moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' |
|
example_title: hi-en fable |
|
tags: |
|
- TensorBlock |
|
- GGUF |
|
base_model: bigscience/bloomz-3b |
|
model-index: |
|
- name: bloomz-3b1 |
|
results: |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: Winogrande XL (xl) |
|
type: winogrande |
|
config: xl |
|
split: validation |
|
revision: a80f460359d1e9a67c006011c94de42a8759430c |
|
metrics: |
|
- type: Accuracy |
|
value: 53.67 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (en) |
|
type: Muennighoff/xwinograd |
|
config: en |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 59.23 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (fr) |
|
type: Muennighoff/xwinograd |
|
config: fr |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 53.01 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (jp) |
|
type: Muennighoff/xwinograd |
|
config: jp |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 52.45 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (pt) |
|
type: Muennighoff/xwinograd |
|
config: pt |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 53.61 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (ru) |
|
type: Muennighoff/xwinograd |
|
config: ru |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 53.97 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (zh) |
|
type: Muennighoff/xwinograd |
|
config: zh |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 60.91 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r1) |
|
type: anli |
|
config: r1 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 40.1 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r2) |
|
type: anli |
|
config: r2 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 36.8 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r3) |
|
type: anli |
|
config: r3 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 40.0 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: SuperGLUE (cb) |
|
type: super_glue |
|
config: cb |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 75.0 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: SuperGLUE (rte) |
|
type: super_glue |
|
config: rte |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 76.17 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ar) |
|
type: xnli |
|
config: ar |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 53.29 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (bg) |
|
type: xnli |
|
config: bg |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 43.82 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (de) |
|
type: xnli |
|
config: de |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 45.26 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (el) |
|
type: xnli |
|
config: el |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 42.61 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (en) |
|
type: xnli |
|
config: en |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 57.31 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (es) |
|
type: xnli |
|
config: es |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 56.14 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (fr) |
|
type: xnli |
|
config: fr |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 55.78 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (hi) |
|
type: xnli |
|
config: hi |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 51.49 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ru) |
|
type: xnli |
|
config: ru |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 47.11 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (sw) |
|
type: xnli |
|
config: sw |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 47.83 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (th) |
|
type: xnli |
|
config: th |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 42.93 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (tr) |
|
type: xnli |
|
config: tr |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 37.23 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ur) |
|
type: xnli |
|
config: ur |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 49.04 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (vi) |
|
type: xnli |
|
config: vi |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 53.98 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (zh) |
|
type: xnli |
|
config: zh |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 54.18 |
|
- task: |
|
type: Program synthesis |
|
dataset: |
|
name: HumanEval |
|
type: openai_humaneval |
|
config: None |
|
split: test |
|
revision: e8dc562f5de170c54b5481011dd9f4fa04845771 |
|
metrics: |
|
- type: Pass@1 |
|
value: 6.29 |
|
- type: Pass@10 |
|
value: 11.94 |
|
- type: Pass@100 |
|
value: 19.06 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: StoryCloze (2016) |
|
type: story_cloze |
|
config: '2016' |
|
split: validation |
|
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db |
|
metrics: |
|
- type: Accuracy |
|
value: 87.33 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: SuperGLUE (copa) |
|
type: super_glue |
|
config: copa |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 76.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (et) |
|
type: xcopa |
|
config: et |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 53.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (ht) |
|
type: xcopa |
|
config: ht |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 64.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (id) |
|
type: xcopa |
|
config: id |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 70.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (it) |
|
type: xcopa |
|
config: it |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 53.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (qu) |
|
type: xcopa |
|
config: qu |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 56.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (sw) |
|
type: xcopa |
|
config: sw |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 66.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (ta) |
|
type: xcopa |
|
config: ta |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 59.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (th) |
|
type: xcopa |
|
config: th |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 63.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (tr) |
|
type: xcopa |
|
config: tr |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 61.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (vi) |
|
type: xcopa |
|
config: vi |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 77.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (zh) |
|
type: xcopa |
|
config: zh |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 73.0 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (ar) |
|
type: Muennighoff/xstory_cloze |
|
config: ar |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 80.61 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (es) |
|
type: Muennighoff/xstory_cloze |
|
config: es |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 85.9 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (eu) |
|
type: Muennighoff/xstory_cloze |
|
config: eu |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 70.95 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (hi) |
|
type: Muennighoff/xstory_cloze |
|
config: hi |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 78.89 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (id) |
|
type: Muennighoff/xstory_cloze |
|
config: id |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 82.99 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (my) |
|
type: Muennighoff/xstory_cloze |
|
config: my |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 49.9 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (ru) |
|
type: Muennighoff/xstory_cloze |
|
config: ru |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 61.42 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (sw) |
|
type: Muennighoff/xstory_cloze |
|
config: sw |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 69.69 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (te) |
|
type: Muennighoff/xstory_cloze |
|
config: te |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 73.66 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (zh) |
|
type: Muennighoff/xstory_cloze |
|
config: zh |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 84.32 |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## bigscience/bloomz-3b - GGUF |
|
|
|
This repo contains GGUF format model files for [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
|
|
<div style="text-align: left; margin: 20px 0;"> |
|
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> |
|
Run them on the TensorBlock client using your local machine ↗ |
|
</a> |
|
</div> |
|
|
|
## Prompt template |
|
|
|
|
|
``` |
|
|
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [bloomz-3b-Q2_K.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q2_K.gguf) | Q2_K | 1.516 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [bloomz-3b-Q3_K_S.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q3_K_S.gguf) | Q3_K_S | 1.707 GB | very small, high quality loss | |
|
| [bloomz-3b-Q3_K_M.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q3_K_M.gguf) | Q3_K_M | 1.905 GB | very small, high quality loss | |
|
| [bloomz-3b-Q3_K_L.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q3_K_L.gguf) | Q3_K_L | 2.016 GB | small, substantial quality loss | |
|
| [bloomz-3b-Q4_0.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q4_0.gguf) | Q4_0 | 2.079 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [bloomz-3b-Q4_K_S.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q4_K_S.gguf) | Q4_K_S | 2.088 GB | small, greater quality loss | |
|
| [bloomz-3b-Q4_K_M.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q4_K_M.gguf) | Q4_K_M | 2.235 GB | medium, balanced quality - recommended | |
|
| [bloomz-3b-Q5_0.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q5_0.gguf) | Q5_0 | 2.428 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [bloomz-3b-Q5_K_S.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q5_K_S.gguf) | Q5_K_S | 2.428 GB | large, low quality loss - recommended | |
|
| [bloomz-3b-Q5_K_M.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q5_K_M.gguf) | Q5_K_M | 2.546 GB | large, very low quality loss - recommended | |
|
| [bloomz-3b-Q6_K.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q6_K.gguf) | Q6_K | 2.799 GB | very large, extremely low quality loss | |
|
| [bloomz-3b-Q8_0.gguf](https://huggingface.co/tensorblock/bloomz-3b-GGUF/blob/main/bloomz-3b-Q8_0.gguf) | Q8_0 | 3.621 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/bloomz-3b-GGUF --include "bloomz-3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/bloomz-3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|