|
--- |
|
license: llama3.1 |
|
library_name: transformers |
|
tags: |
|
- abliterated |
|
- uncensored |
|
- TensorBlock |
|
- GGUF |
|
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
model-index: |
|
- name: Meta-Llama-3.1-8B-Instruct-abliterated |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 73.29 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 27.13 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 6.42 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 0.89 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.21 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 27.81 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated - GGUF |
|
|
|
This repo contains GGUF format model files for [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
|
|
<div style="text-align: left; margin: 20px 0;"> |
|
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> |
|
Run them on the TensorBlock client using your local machine ↗ |
|
</a> |
|
</div> |
|
|
|
## Prompt template |
|
|
|
|
|
``` |
|
<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
|
|
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> |
|
|
|
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_L.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss | |
|
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF --include "Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|