File size: 8,524 Bytes
cc3bd43 8f4d6b5 cc3bd43 8f4d6b5 cc3bd43 8f4d6b5 cc3bd43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: llama3.1
library_name: transformers
tags:
- abliterated
- uncensored
- TensorBlock
- GGUF
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
model-index:
- name: Meta-Llama-3.1-8B-Instruct-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.29
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.42
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.89
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.21
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.81
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated - GGUF
This repo contains GGUF format model files for [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_L.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_S.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss |
| [Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0.gguf](https://huggingface.co/tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-abliterated-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF --include "Meta-Llama-3.1-8B-Instruct-abliterated-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|