morriszms's picture
Upload folder using huggingface_hub
214ad0e verified
metadata
language:
  - en
  - de
license: apache-2.0
tags:
  - chat
  - TensorBlock
  - GGUF
base_model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
  - name: Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 82.92
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 48.05
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.3
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.65
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4 - GGUF

This repo contains GGUF format model files for Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q2_K.gguf Q2_K 5.770 GB smallest, significant quality loss - not recommended for most purposes
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_S.gguf Q3_K_S 6.660 GB very small, high quality loss
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_M.gguf Q3_K_M 7.339 GB very small, high quality loss
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_L.gguf Q3_K_L 7.925 GB small, substantial quality loss
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_0.gguf Q4_0 8.518 GB legacy; small, very high quality loss - prefer using Q3_K_M
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_K_S.gguf Q4_K_S 8.573 GB small, greater quality loss
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_K_M.gguf Q4_K_M 8.988 GB medium, balanced quality - recommended
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_0.gguf Q5_0 10.267 GB legacy; medium, balanced quality - prefer using Q4_K_M
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_K_S.gguf Q5_K_S 10.267 GB large, low quality loss - recommended
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_K_M.gguf Q5_K_M 10.509 GB large, very low quality loss - recommended
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q6_K.gguf Q6_K 12.125 GB very large, extremely low quality loss
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q8_0.gguf Q8_0 15.702 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-GGUF --include "Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'