|
--- |
|
license: other |
|
license_name: gemma-terms-of-use |
|
license_link: https://ai.google.dev/gemma/terms |
|
base_model: Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0 |
|
datasets: |
|
- ravithejads/samvaad-hi-filtered |
|
- Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized |
|
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized |
|
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered |
|
- Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered |
|
- Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered |
|
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered |
|
- Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered |
|
- Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered |
|
- abhinand/tamil-alpaca |
|
- Tensoic/airoboros-3.2_kn |
|
- Tensoic/gpt-teacher_kn |
|
- VishnuPJ/Alpaca_Instruct_Malayalam |
|
- Tensoic/Alpaca-Gujarati |
|
- HydraIndicLM/punjabi_alpaca_52K |
|
- HydraIndicLM/bengali_alpaca_dolly_67k |
|
- OdiaGenAI/Odia_Alpaca_instructions_52k |
|
- yahma/alpaca-cleaned |
|
language: |
|
- te |
|
- en |
|
- ta |
|
- ml |
|
- mr |
|
- hi |
|
- kn |
|
- sd |
|
- ne |
|
- ur |
|
- as |
|
- gu |
|
- bn |
|
- pa |
|
- or |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- TensorBlock |
|
- GGUF |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0 - GGUF |
|
|
|
This repo contains GGUF format model files for [Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0](https://huggingface.co/Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
<div style="text-align: left; margin: 20px 0;"> |
|
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> |
|
Run them on the TensorBlock client using your local machine ↗ |
|
</a> |
|
</div> |
|
|
|
## Prompt template |
|
|
|
``` |
|
|
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q6_K.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss | |
|
| [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q8_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF --include "Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|