GritLM-7B-GGUF / README.md
morriszms's picture
Update README.md
b176572 verified
metadata
pipeline_tag: text-generation
inference: true
license: apache-2.0
datasets:
  - GritLM/tulu2
tags:
  - mteb
  - TensorBlock
  - GGUF
base_model: GritLM/GritLM-7B
model-index:
  - name: GritLM-7B
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 81.17910447761194
          - type: ap
            value: 46.26260671758199
          - type: f1
            value: 75.44565719934167
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 96.5161
          - type: ap
            value: 94.79131981460425
          - type: f1
            value: 96.51506148413065
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 57.806000000000004
          - type: f1
            value: 56.78350156257903
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.478
          - type: map_at_10
            value: 54.955
          - type: map_at_100
            value: 54.955
          - type: map_at_1000
            value: 54.955
          - type: map_at_3
            value: 50.888999999999996
          - type: map_at_5
            value: 53.349999999999994
          - type: mrr_at_1
            value: 39.757999999999996
          - type: mrr_at_10
            value: 55.449000000000005
          - type: mrr_at_100
            value: 55.449000000000005
          - type: mrr_at_1000
            value: 55.449000000000005
          - type: mrr_at_3
            value: 51.37500000000001
          - type: mrr_at_5
            value: 53.822
          - type: ndcg_at_1
            value: 38.478
          - type: ndcg_at_10
            value: 63.239999999999995
          - type: ndcg_at_100
            value: 63.239999999999995
          - type: ndcg_at_1000
            value: 63.239999999999995
          - type: ndcg_at_3
            value: 54.935
          - type: ndcg_at_5
            value: 59.379000000000005
          - type: precision_at_1
            value: 38.478
          - type: precision_at_10
            value: 8.933
          - type: precision_at_100
            value: 0.893
          - type: precision_at_1000
            value: 0.089
          - type: precision_at_3
            value: 22.214
          - type: precision_at_5
            value: 15.491
          - type: recall_at_1
            value: 38.478
          - type: recall_at_10
            value: 89.331
          - type: recall_at_100
            value: 89.331
          - type: recall_at_1000
            value: 89.331
          - type: recall_at_3
            value: 66.643
          - type: recall_at_5
            value: 77.45400000000001
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 51.67144081472449
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 48.11256154264126
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 67.33801955487878
          - type: mrr
            value: 80.71549487754474
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 88.1935203751726
          - type: cos_sim_spearman
            value: 86.35497970498659
          - type: euclidean_pearson
            value: 85.46910708503744
          - type: euclidean_spearman
            value: 85.13928935405485
          - type: manhattan_pearson
            value: 85.68373836333303
          - type: manhattan_spearman
            value: 85.40013867117746
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 88.46753246753248
          - type: f1
            value: 88.43006344981134
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 40.86793640310432
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 39.80291334130727
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.421
          - type: map_at_10
            value: 52.349000000000004
          - type: map_at_100
            value: 52.349000000000004
          - type: map_at_1000
            value: 52.349000000000004
          - type: map_at_3
            value: 48.17
          - type: map_at_5
            value: 50.432
          - type: mrr_at_1
            value: 47.353
          - type: mrr_at_10
            value: 58.387
          - type: mrr_at_100
            value: 58.387
          - type: mrr_at_1000
            value: 58.387
          - type: mrr_at_3
            value: 56.199
          - type: mrr_at_5
            value: 57.487
          - type: ndcg_at_1
            value: 47.353
          - type: ndcg_at_10
            value: 59.202
          - type: ndcg_at_100
            value: 58.848
          - type: ndcg_at_1000
            value: 58.831999999999994
          - type: ndcg_at_3
            value: 54.112
          - type: ndcg_at_5
            value: 56.312
          - type: precision_at_1
            value: 47.353
          - type: precision_at_10
            value: 11.459
          - type: precision_at_100
            value: 1.146
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 26.133
          - type: precision_at_5
            value: 18.627
          - type: recall_at_1
            value: 38.421
          - type: recall_at_10
            value: 71.89
          - type: recall_at_100
            value: 71.89
          - type: recall_at_1000
            value: 71.89
          - type: recall_at_3
            value: 56.58
          - type: recall_at_5
            value: 63.125
          - type: map_at_1
            value: 38.025999999999996
          - type: map_at_10
            value: 50.590999999999994
          - type: map_at_100
            value: 51.99700000000001
          - type: map_at_1000
            value: 52.11599999999999
          - type: map_at_3
            value: 47.435
          - type: map_at_5
            value: 49.236000000000004
          - type: mrr_at_1
            value: 48.28
          - type: mrr_at_10
            value: 56.814
          - type: mrr_at_100
            value: 57.446
          - type: mrr_at_1000
            value: 57.476000000000006
          - type: mrr_at_3
            value: 54.958
          - type: mrr_at_5
            value: 56.084999999999994
          - type: ndcg_at_1
            value: 48.28
          - type: ndcg_at_10
            value: 56.442
          - type: ndcg_at_100
            value: 60.651999999999994
          - type: ndcg_at_1000
            value: 62.187000000000005
          - type: ndcg_at_3
            value: 52.866
          - type: ndcg_at_5
            value: 54.515
          - type: precision_at_1
            value: 48.28
          - type: precision_at_10
            value: 10.586
          - type: precision_at_100
            value: 1.6310000000000002
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 25.945
          - type: precision_at_5
            value: 18.076
          - type: recall_at_1
            value: 38.025999999999996
          - type: recall_at_10
            value: 66.11399999999999
          - type: recall_at_100
            value: 83.339
          - type: recall_at_1000
            value: 92.413
          - type: recall_at_3
            value: 54.493
          - type: recall_at_5
            value: 59.64699999999999
          - type: map_at_1
            value: 47.905
          - type: map_at_10
            value: 61.58
          - type: map_at_100
            value: 62.605
          - type: map_at_1000
            value: 62.637
          - type: map_at_3
            value: 58.074000000000005
          - type: map_at_5
            value: 60.260000000000005
          - type: mrr_at_1
            value: 54.42
          - type: mrr_at_10
            value: 64.847
          - type: mrr_at_100
            value: 65.403
          - type: mrr_at_1000
            value: 65.41900000000001
          - type: mrr_at_3
            value: 62.675000000000004
          - type: mrr_at_5
            value: 64.101
          - type: ndcg_at_1
            value: 54.42
          - type: ndcg_at_10
            value: 67.394
          - type: ndcg_at_100
            value: 70.846
          - type: ndcg_at_1000
            value: 71.403
          - type: ndcg_at_3
            value: 62.025
          - type: ndcg_at_5
            value: 65.032
          - type: precision_at_1
            value: 54.42
          - type: precision_at_10
            value: 10.646
          - type: precision_at_100
            value: 1.325
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 27.398
          - type: precision_at_5
            value: 18.796
          - type: recall_at_1
            value: 47.905
          - type: recall_at_10
            value: 80.84599999999999
          - type: recall_at_100
            value: 95.078
          - type: recall_at_1000
            value: 98.878
          - type: recall_at_3
            value: 67.05600000000001
          - type: recall_at_5
            value: 74.261
          - type: map_at_1
            value: 30.745
          - type: map_at_10
            value: 41.021
          - type: map_at_100
            value: 41.021
          - type: map_at_1000
            value: 41.021
          - type: map_at_3
            value: 37.714999999999996
          - type: map_at_5
            value: 39.766
          - type: mrr_at_1
            value: 33.559
          - type: mrr_at_10
            value: 43.537
          - type: mrr_at_100
            value: 43.537
          - type: mrr_at_1000
            value: 43.537
          - type: mrr_at_3
            value: 40.546
          - type: mrr_at_5
            value: 42.439
          - type: ndcg_at_1
            value: 33.559
          - type: ndcg_at_10
            value: 46.781
          - type: ndcg_at_100
            value: 46.781
          - type: ndcg_at_1000
            value: 46.781
          - type: ndcg_at_3
            value: 40.516000000000005
          - type: ndcg_at_5
            value: 43.957
          - type: precision_at_1
            value: 33.559
          - type: precision_at_10
            value: 7.198
          - type: precision_at_100
            value: 0.72
          - type: precision_at_1000
            value: 0.07200000000000001
          - type: precision_at_3
            value: 17.1
          - type: precision_at_5
            value: 12.316
          - type: recall_at_1
            value: 30.745
          - type: recall_at_10
            value: 62.038000000000004
          - type: recall_at_100
            value: 62.038000000000004
          - type: recall_at_1000
            value: 62.038000000000004
          - type: recall_at_3
            value: 45.378
          - type: recall_at_5
            value: 53.580000000000005
          - type: map_at_1
            value: 19.637999999999998
          - type: map_at_10
            value: 31.05
          - type: map_at_100
            value: 31.05
          - type: map_at_1000
            value: 31.05
          - type: map_at_3
            value: 27.628000000000004
          - type: map_at_5
            value: 29.767
          - type: mrr_at_1
            value: 25
          - type: mrr_at_10
            value: 36.131
          - type: mrr_at_100
            value: 36.131
          - type: mrr_at_1000
            value: 36.131
          - type: mrr_at_3
            value: 33.333
          - type: mrr_at_5
            value: 35.143
          - type: ndcg_at_1
            value: 25
          - type: ndcg_at_10
            value: 37.478
          - type: ndcg_at_100
            value: 37.469
          - type: ndcg_at_1000
            value: 37.469
          - type: ndcg_at_3
            value: 31.757999999999996
          - type: ndcg_at_5
            value: 34.821999999999996
          - type: precision_at_1
            value: 25
          - type: precision_at_10
            value: 7.188999999999999
          - type: precision_at_100
            value: 0.719
          - type: precision_at_1000
            value: 0.07200000000000001
          - type: precision_at_3
            value: 15.837000000000002
          - type: precision_at_5
            value: 11.841
          - type: recall_at_1
            value: 19.637999999999998
          - type: recall_at_10
            value: 51.836000000000006
          - type: recall_at_100
            value: 51.836000000000006
          - type: recall_at_1000
            value: 51.836000000000006
          - type: recall_at_3
            value: 36.384
          - type: recall_at_5
            value: 43.964
          - type: map_at_1
            value: 34.884
          - type: map_at_10
            value: 47.88
          - type: map_at_100
            value: 47.88
          - type: map_at_1000
            value: 47.88
          - type: map_at_3
            value: 43.85
          - type: map_at_5
            value: 46.414
          - type: mrr_at_1
            value: 43.022
          - type: mrr_at_10
            value: 53.569
          - type: mrr_at_100
            value: 53.569
          - type: mrr_at_1000
            value: 53.569
          - type: mrr_at_3
            value: 51.075
          - type: mrr_at_5
            value: 52.725
          - type: ndcg_at_1
            value: 43.022
          - type: ndcg_at_10
            value: 54.461000000000006
          - type: ndcg_at_100
            value: 54.388000000000005
          - type: ndcg_at_1000
            value: 54.388000000000005
          - type: ndcg_at_3
            value: 48.864999999999995
          - type: ndcg_at_5
            value: 52.032000000000004
          - type: precision_at_1
            value: 43.022
          - type: precision_at_10
            value: 9.885
          - type: precision_at_100
            value: 0.988
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 23.612
          - type: precision_at_5
            value: 16.997
          - type: recall_at_1
            value: 34.884
          - type: recall_at_10
            value: 68.12899999999999
          - type: recall_at_100
            value: 68.12899999999999
          - type: recall_at_1000
            value: 68.12899999999999
          - type: recall_at_3
            value: 52.428
          - type: recall_at_5
            value: 60.662000000000006
          - type: map_at_1
            value: 31.588
          - type: map_at_10
            value: 43.85
          - type: map_at_100
            value: 45.317
          - type: map_at_1000
            value: 45.408
          - type: map_at_3
            value: 39.73
          - type: map_at_5
            value: 42.122
          - type: mrr_at_1
            value: 38.927
          - type: mrr_at_10
            value: 49.582
          - type: mrr_at_100
            value: 50.39
          - type: mrr_at_1000
            value: 50.426
          - type: mrr_at_3
            value: 46.518
          - type: mrr_at_5
            value: 48.271
          - type: ndcg_at_1
            value: 38.927
          - type: ndcg_at_10
            value: 50.605999999999995
          - type: ndcg_at_100
            value: 56.22200000000001
          - type: ndcg_at_1000
            value: 57.724
          - type: ndcg_at_3
            value: 44.232
          - type: ndcg_at_5
            value: 47.233999999999995
          - type: precision_at_1
            value: 38.927
          - type: precision_at_10
            value: 9.429
          - type: precision_at_100
            value: 1.435
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 21.271
          - type: precision_at_5
            value: 15.434000000000001
          - type: recall_at_1
            value: 31.588
          - type: recall_at_10
            value: 64.836
          - type: recall_at_100
            value: 88.066
          - type: recall_at_1000
            value: 97.748
          - type: recall_at_3
            value: 47.128
          - type: recall_at_5
            value: 54.954
          - type: map_at_1
            value: 31.956083333333336
          - type: map_at_10
            value: 43.33483333333333
          - type: map_at_100
            value: 44.64883333333333
          - type: map_at_1000
            value: 44.75
          - type: map_at_3
            value: 39.87741666666666
          - type: map_at_5
            value: 41.86766666666667
          - type: mrr_at_1
            value: 38.06341666666667
          - type: mrr_at_10
            value: 47.839666666666666
          - type: mrr_at_100
            value: 48.644000000000005
          - type: mrr_at_1000
            value: 48.68566666666667
          - type: mrr_at_3
            value: 45.26358333333334
          - type: mrr_at_5
            value: 46.790000000000006
          - type: ndcg_at_1
            value: 38.06341666666667
          - type: ndcg_at_10
            value: 49.419333333333334
          - type: ndcg_at_100
            value: 54.50166666666667
          - type: ndcg_at_1000
            value: 56.161166666666674
          - type: ndcg_at_3
            value: 43.982416666666666
          - type: ndcg_at_5
            value: 46.638083333333334
          - type: precision_at_1
            value: 38.06341666666667
          - type: precision_at_10
            value: 8.70858333333333
          - type: precision_at_100
            value: 1.327
          - type: precision_at_1000
            value: 0.165
          - type: precision_at_3
            value: 20.37816666666667
          - type: precision_at_5
            value: 14.516333333333334
          - type: recall_at_1
            value: 31.956083333333336
          - type: recall_at_10
            value: 62.69458333333334
          - type: recall_at_100
            value: 84.46433333333334
          - type: recall_at_1000
            value: 95.58449999999999
          - type: recall_at_3
            value: 47.52016666666666
          - type: recall_at_5
            value: 54.36066666666666
          - type: map_at_1
            value: 28.912
          - type: map_at_10
            value: 38.291
          - type: map_at_100
            value: 39.44
          - type: map_at_1000
            value: 39.528
          - type: map_at_3
            value: 35.638
          - type: map_at_5
            value: 37.218
          - type: mrr_at_1
            value: 32.822
          - type: mrr_at_10
            value: 41.661
          - type: mrr_at_100
            value: 42.546
          - type: mrr_at_1000
            value: 42.603
          - type: mrr_at_3
            value: 39.238
          - type: mrr_at_5
            value: 40.726
          - type: ndcg_at_1
            value: 32.822
          - type: ndcg_at_10
            value: 43.373
          - type: ndcg_at_100
            value: 48.638
          - type: ndcg_at_1000
            value: 50.654999999999994
          - type: ndcg_at_3
            value: 38.643
          - type: ndcg_at_5
            value: 41.126000000000005
          - type: precision_at_1
            value: 32.822
          - type: precision_at_10
            value: 6.8709999999999996
          - type: precision_at_100
            value: 1.032
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 16.82
          - type: precision_at_5
            value: 11.718
          - type: recall_at_1
            value: 28.912
          - type: recall_at_10
            value: 55.376999999999995
          - type: recall_at_100
            value: 79.066
          - type: recall_at_1000
            value: 93.664
          - type: recall_at_3
            value: 42.569
          - type: recall_at_5
            value: 48.719
          - type: map_at_1
            value: 22.181
          - type: map_at_10
            value: 31.462
          - type: map_at_100
            value: 32.73
          - type: map_at_1000
            value: 32.848
          - type: map_at_3
            value: 28.57
          - type: map_at_5
            value: 30.182
          - type: mrr_at_1
            value: 27.185
          - type: mrr_at_10
            value: 35.846000000000004
          - type: mrr_at_100
            value: 36.811
          - type: mrr_at_1000
            value: 36.873
          - type: mrr_at_3
            value: 33.437
          - type: mrr_at_5
            value: 34.813
          - type: ndcg_at_1
            value: 27.185
          - type: ndcg_at_10
            value: 36.858000000000004
          - type: ndcg_at_100
            value: 42.501
          - type: ndcg_at_1000
            value: 44.945
          - type: ndcg_at_3
            value: 32.066
          - type: ndcg_at_5
            value: 34.29
          - type: precision_at_1
            value: 27.185
          - type: precision_at_10
            value: 6.752
          - type: precision_at_100
            value: 1.111
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 15.290000000000001
          - type: precision_at_5
            value: 11.004999999999999
          - type: recall_at_1
            value: 22.181
          - type: recall_at_10
            value: 48.513
          - type: recall_at_100
            value: 73.418
          - type: recall_at_1000
            value: 90.306
          - type: recall_at_3
            value: 35.003
          - type: recall_at_5
            value: 40.876000000000005
          - type: map_at_1
            value: 33.934999999999995
          - type: map_at_10
            value: 44.727
          - type: map_at_100
            value: 44.727
          - type: map_at_1000
            value: 44.727
          - type: map_at_3
            value: 40.918
          - type: map_at_5
            value: 42.961
          - type: mrr_at_1
            value: 39.646
          - type: mrr_at_10
            value: 48.898
          - type: mrr_at_100
            value: 48.898
          - type: mrr_at_1000
            value: 48.898
          - type: mrr_at_3
            value: 45.896
          - type: mrr_at_5
            value: 47.514
          - type: ndcg_at_1
            value: 39.646
          - type: ndcg_at_10
            value: 50.817
          - type: ndcg_at_100
            value: 50.803
          - type: ndcg_at_1000
            value: 50.803
          - type: ndcg_at_3
            value: 44.507999999999996
          - type: ndcg_at_5
            value: 47.259
          - type: precision_at_1
            value: 39.646
          - type: precision_at_10
            value: 8.759
          - type: precision_at_100
            value: 0.876
          - type: precision_at_1000
            value: 0.08800000000000001
          - type: precision_at_3
            value: 20.274
          - type: precision_at_5
            value: 14.366000000000001
          - type: recall_at_1
            value: 33.934999999999995
          - type: recall_at_10
            value: 65.037
          - type: recall_at_100
            value: 65.037
          - type: recall_at_1000
            value: 65.037
          - type: recall_at_3
            value: 47.439
          - type: recall_at_5
            value: 54.567
          - type: map_at_1
            value: 32.058
          - type: map_at_10
            value: 43.137
          - type: map_at_100
            value: 43.137
          - type: map_at_1000
            value: 43.137
          - type: map_at_3
            value: 39.882
          - type: map_at_5
            value: 41.379
          - type: mrr_at_1
            value: 38.933
          - type: mrr_at_10
            value: 48.344
          - type: mrr_at_100
            value: 48.344
          - type: mrr_at_1000
            value: 48.344
          - type: mrr_at_3
            value: 45.652
          - type: mrr_at_5
            value: 46.877
          - type: ndcg_at_1
            value: 38.933
          - type: ndcg_at_10
            value: 49.964
          - type: ndcg_at_100
            value: 49.242000000000004
          - type: ndcg_at_1000
            value: 49.222
          - type: ndcg_at_3
            value: 44.605
          - type: ndcg_at_5
            value: 46.501999999999995
          - type: precision_at_1
            value: 38.933
          - type: precision_at_10
            value: 9.427000000000001
          - type: precision_at_100
            value: 0.943
          - type: precision_at_1000
            value: 0.094
          - type: precision_at_3
            value: 20.685000000000002
          - type: precision_at_5
            value: 14.585
          - type: recall_at_1
            value: 32.058
          - type: recall_at_10
            value: 63.074
          - type: recall_at_100
            value: 63.074
          - type: recall_at_1000
            value: 63.074
          - type: recall_at_3
            value: 47.509
          - type: recall_at_5
            value: 52.455
          - type: map_at_1
            value: 26.029000000000003
          - type: map_at_10
            value: 34.646
          - type: map_at_100
            value: 34.646
          - type: map_at_1000
            value: 34.646
          - type: map_at_3
            value: 31.456
          - type: map_at_5
            value: 33.138
          - type: mrr_at_1
            value: 28.281
          - type: mrr_at_10
            value: 36.905
          - type: mrr_at_100
            value: 36.905
          - type: mrr_at_1000
            value: 36.905
          - type: mrr_at_3
            value: 34.011
          - type: mrr_at_5
            value: 35.638
          - type: ndcg_at_1
            value: 28.281
          - type: ndcg_at_10
            value: 40.159
          - type: ndcg_at_100
            value: 40.159
          - type: ndcg_at_1000
            value: 40.159
          - type: ndcg_at_3
            value: 33.995
          - type: ndcg_at_5
            value: 36.836999999999996
          - type: precision_at_1
            value: 28.281
          - type: precision_at_10
            value: 6.358999999999999
          - type: precision_at_100
            value: 0.636
          - type: precision_at_1000
            value: 0.064
          - type: precision_at_3
            value: 14.233
          - type: precision_at_5
            value: 10.314
          - type: recall_at_1
            value: 26.029000000000003
          - type: recall_at_10
            value: 55.08
          - type: recall_at_100
            value: 55.08
          - type: recall_at_1000
            value: 55.08
          - type: recall_at_3
            value: 38.487
          - type: recall_at_5
            value: 45.308
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.842999999999998
          - type: map_at_10
            value: 22.101000000000003
          - type: map_at_100
            value: 24.319
          - type: map_at_1000
            value: 24.51
          - type: map_at_3
            value: 18.372
          - type: map_at_5
            value: 20.323
          - type: mrr_at_1
            value: 27.948
          - type: mrr_at_10
            value: 40.321
          - type: mrr_at_100
            value: 41.262
          - type: mrr_at_1000
            value: 41.297
          - type: mrr_at_3
            value: 36.558
          - type: mrr_at_5
            value: 38.824999999999996
          - type: ndcg_at_1
            value: 27.948
          - type: ndcg_at_10
            value: 30.906
          - type: ndcg_at_100
            value: 38.986
          - type: ndcg_at_1000
            value: 42.136
          - type: ndcg_at_3
            value: 24.911
          - type: ndcg_at_5
            value: 27.168999999999997
          - type: precision_at_1
            value: 27.948
          - type: precision_at_10
            value: 9.798
          - type: precision_at_100
            value: 1.8399999999999999
          - type: precision_at_1000
            value: 0.243
          - type: precision_at_3
            value: 18.328
          - type: precision_at_5
            value: 14.502
          - type: recall_at_1
            value: 12.842999999999998
          - type: recall_at_10
            value: 37.245
          - type: recall_at_100
            value: 64.769
          - type: recall_at_1000
            value: 82.055
          - type: recall_at_3
            value: 23.159
          - type: recall_at_5
            value: 29.113
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.934000000000001
          - type: map_at_10
            value: 21.915000000000003
          - type: map_at_100
            value: 21.915000000000003
          - type: map_at_1000
            value: 21.915000000000003
          - type: map_at_3
            value: 14.623
          - type: map_at_5
            value: 17.841
          - type: mrr_at_1
            value: 71.25
          - type: mrr_at_10
            value: 78.994
          - type: mrr_at_100
            value: 78.994
          - type: mrr_at_1000
            value: 78.994
          - type: mrr_at_3
            value: 77.208
          - type: mrr_at_5
            value: 78.55799999999999
          - type: ndcg_at_1
            value: 60.62499999999999
          - type: ndcg_at_10
            value: 46.604
          - type: ndcg_at_100
            value: 35.653
          - type: ndcg_at_1000
            value: 35.531
          - type: ndcg_at_3
            value: 50.605
          - type: ndcg_at_5
            value: 48.730000000000004
          - type: precision_at_1
            value: 71.25
          - type: precision_at_10
            value: 37.75
          - type: precision_at_100
            value: 3.775
          - type: precision_at_1000
            value: 0.377
          - type: precision_at_3
            value: 54.417
          - type: precision_at_5
            value: 48.15
          - type: recall_at_1
            value: 8.934000000000001
          - type: recall_at_10
            value: 28.471000000000004
          - type: recall_at_100
            value: 28.471000000000004
          - type: recall_at_1000
            value: 28.471000000000004
          - type: recall_at_3
            value: 16.019
          - type: recall_at_5
            value: 21.410999999999998
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 52.81
          - type: f1
            value: 47.987573380720114
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 66.81899999999999
          - type: map_at_10
            value: 78.034
          - type: map_at_100
            value: 78.034
          - type: map_at_1000
            value: 78.034
          - type: map_at_3
            value: 76.43100000000001
          - type: map_at_5
            value: 77.515
          - type: mrr_at_1
            value: 71.542
          - type: mrr_at_10
            value: 81.638
          - type: mrr_at_100
            value: 81.638
          - type: mrr_at_1000
            value: 81.638
          - type: mrr_at_3
            value: 80.403
          - type: mrr_at_5
            value: 81.256
          - type: ndcg_at_1
            value: 71.542
          - type: ndcg_at_10
            value: 82.742
          - type: ndcg_at_100
            value: 82.741
          - type: ndcg_at_1000
            value: 82.741
          - type: ndcg_at_3
            value: 80.039
          - type: ndcg_at_5
            value: 81.695
          - type: precision_at_1
            value: 71.542
          - type: precision_at_10
            value: 10.387
          - type: precision_at_100
            value: 1.039
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 31.447999999999997
          - type: precision_at_5
            value: 19.91
          - type: recall_at_1
            value: 66.81899999999999
          - type: recall_at_10
            value: 93.372
          - type: recall_at_100
            value: 93.372
          - type: recall_at_1000
            value: 93.372
          - type: recall_at_3
            value: 86.33
          - type: recall_at_5
            value: 90.347
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.158
          - type: map_at_10
            value: 52.017
          - type: map_at_100
            value: 54.259
          - type: map_at_1000
            value: 54.367
          - type: map_at_3
            value: 45.738
          - type: map_at_5
            value: 49.283
          - type: mrr_at_1
            value: 57.87
          - type: mrr_at_10
            value: 66.215
          - type: mrr_at_100
            value: 66.735
          - type: mrr_at_1000
            value: 66.75
          - type: mrr_at_3
            value: 64.043
          - type: mrr_at_5
            value: 65.116
          - type: ndcg_at_1
            value: 57.87
          - type: ndcg_at_10
            value: 59.946999999999996
          - type: ndcg_at_100
            value: 66.31099999999999
          - type: ndcg_at_1000
            value: 67.75999999999999
          - type: ndcg_at_3
            value: 55.483000000000004
          - type: ndcg_at_5
            value: 56.891000000000005
          - type: precision_at_1
            value: 57.87
          - type: precision_at_10
            value: 16.497
          - type: precision_at_100
            value: 2.321
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 37.14
          - type: precision_at_5
            value: 27.067999999999998
          - type: recall_at_1
            value: 31.158
          - type: recall_at_10
            value: 67.381
          - type: recall_at_100
            value: 89.464
          - type: recall_at_1000
            value: 97.989
          - type: recall_at_3
            value: 50.553000000000004
          - type: recall_at_5
            value: 57.824
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.073
          - type: map_at_10
            value: 72.418
          - type: map_at_100
            value: 73.175
          - type: map_at_1000
            value: 73.215
          - type: map_at_3
            value: 68.791
          - type: map_at_5
            value: 71.19
          - type: mrr_at_1
            value: 84.146
          - type: mrr_at_10
            value: 88.994
          - type: mrr_at_100
            value: 89.116
          - type: mrr_at_1000
            value: 89.12
          - type: mrr_at_3
            value: 88.373
          - type: mrr_at_5
            value: 88.82
          - type: ndcg_at_1
            value: 84.146
          - type: ndcg_at_10
            value: 79.404
          - type: ndcg_at_100
            value: 81.83200000000001
          - type: ndcg_at_1000
            value: 82.524
          - type: ndcg_at_3
            value: 74.595
          - type: ndcg_at_5
            value: 77.474
          - type: precision_at_1
            value: 84.146
          - type: precision_at_10
            value: 16.753999999999998
          - type: precision_at_100
            value: 1.8599999999999999
          - type: precision_at_1000
            value: 0.19499999999999998
          - type: precision_at_3
            value: 48.854
          - type: precision_at_5
            value: 31.579
          - type: recall_at_1
            value: 42.073
          - type: recall_at_10
            value: 83.768
          - type: recall_at_100
            value: 93.018
          - type: recall_at_1000
            value: 97.481
          - type: recall_at_3
            value: 73.282
          - type: recall_at_5
            value: 78.947
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 94.9968
          - type: ap
            value: 92.93892195862824
          - type: f1
            value: 94.99327998213761
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.698
          - type: map_at_10
            value: 34.585
          - type: map_at_100
            value: 35.782000000000004
          - type: map_at_1000
            value: 35.825
          - type: map_at_3
            value: 30.397999999999996
          - type: map_at_5
            value: 32.72
          - type: mrr_at_1
            value: 22.192
          - type: mrr_at_10
            value: 35.085
          - type: mrr_at_100
            value: 36.218
          - type: mrr_at_1000
            value: 36.256
          - type: mrr_at_3
            value: 30.986000000000004
          - type: mrr_at_5
            value: 33.268
          - type: ndcg_at_1
            value: 22.192
          - type: ndcg_at_10
            value: 41.957
          - type: ndcg_at_100
            value: 47.658
          - type: ndcg_at_1000
            value: 48.697
          - type: ndcg_at_3
            value: 33.433
          - type: ndcg_at_5
            value: 37.551
          - type: precision_at_1
            value: 22.192
          - type: precision_at_10
            value: 6.781
          - type: precision_at_100
            value: 0.963
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.365
          - type: precision_at_5
            value: 10.713000000000001
          - type: recall_at_1
            value: 21.698
          - type: recall_at_10
            value: 64.79
          - type: recall_at_100
            value: 91.071
          - type: recall_at_1000
            value: 98.883
          - type: recall_at_3
            value: 41.611
          - type: recall_at_5
            value: 51.459999999999994
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 96.15823073415413
          - type: f1
            value: 96.00362034963248
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 87.12722298221614
          - type: f1
            value: 70.46888967516227
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 80.77673167451245
          - type: f1
            value: 77.60202561132175
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 82.09145931405514
          - type: f1
            value: 81.7701921473406
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 36.52153488185864
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 36.80090398444147
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.807141746058605
          - type: mrr
            value: 32.85025611455029
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.920999999999999
          - type: map_at_10
            value: 16.049
          - type: map_at_100
            value: 16.049
          - type: map_at_1000
            value: 16.049
          - type: map_at_3
            value: 11.865
          - type: map_at_5
            value: 13.657
          - type: mrr_at_1
            value: 53.87
          - type: mrr_at_10
            value: 62.291
          - type: mrr_at_100
            value: 62.291
          - type: mrr_at_1000
            value: 62.291
          - type: mrr_at_3
            value: 60.681
          - type: mrr_at_5
            value: 61.61
          - type: ndcg_at_1
            value: 51.23799999999999
          - type: ndcg_at_10
            value: 40.892
          - type: ndcg_at_100
            value: 26.951999999999998
          - type: ndcg_at_1000
            value: 26.474999999999998
          - type: ndcg_at_3
            value: 46.821
          - type: ndcg_at_5
            value: 44.333
          - type: precision_at_1
            value: 53.251000000000005
          - type: precision_at_10
            value: 30.124000000000002
          - type: precision_at_100
            value: 3.012
          - type: precision_at_1000
            value: 0.301
          - type: precision_at_3
            value: 43.55
          - type: precision_at_5
            value: 38.266
          - type: recall_at_1
            value: 6.920999999999999
          - type: recall_at_10
            value: 20.852
          - type: recall_at_100
            value: 20.852
          - type: recall_at_1000
            value: 20.852
          - type: recall_at_3
            value: 13.628000000000002
          - type: recall_at_5
            value: 16.273
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 46.827999999999996
          - type: map_at_10
            value: 63.434000000000005
          - type: map_at_100
            value: 63.434000000000005
          - type: map_at_1000
            value: 63.434000000000005
          - type: map_at_3
            value: 59.794000000000004
          - type: map_at_5
            value: 62.08
          - type: mrr_at_1
            value: 52.288999999999994
          - type: mrr_at_10
            value: 65.95
          - type: mrr_at_100
            value: 65.95
          - type: mrr_at_1000
            value: 65.95
          - type: mrr_at_3
            value: 63.413
          - type: mrr_at_5
            value: 65.08
          - type: ndcg_at_1
            value: 52.288999999999994
          - type: ndcg_at_10
            value: 70.301
          - type: ndcg_at_100
            value: 70.301
          - type: ndcg_at_1000
            value: 70.301
          - type: ndcg_at_3
            value: 63.979
          - type: ndcg_at_5
            value: 67.582
          - type: precision_at_1
            value: 52.288999999999994
          - type: precision_at_10
            value: 10.576
          - type: precision_at_100
            value: 1.058
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 28.177000000000003
          - type: precision_at_5
            value: 19.073
          - type: recall_at_1
            value: 46.827999999999996
          - type: recall_at_10
            value: 88.236
          - type: recall_at_100
            value: 88.236
          - type: recall_at_1000
            value: 88.236
          - type: recall_at_3
            value: 72.371
          - type: recall_at_5
            value: 80.56
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.652
          - type: map_at_10
            value: 85.953
          - type: map_at_100
            value: 85.953
          - type: map_at_1000
            value: 85.953
          - type: map_at_3
            value: 83.05399999999999
          - type: map_at_5
            value: 84.89
          - type: mrr_at_1
            value: 82.42
          - type: mrr_at_10
            value: 88.473
          - type: mrr_at_100
            value: 88.473
          - type: mrr_at_1000
            value: 88.473
          - type: mrr_at_3
            value: 87.592
          - type: mrr_at_5
            value: 88.211
          - type: ndcg_at_1
            value: 82.44
          - type: ndcg_at_10
            value: 89.467
          - type: ndcg_at_100
            value: 89.33
          - type: ndcg_at_1000
            value: 89.33
          - type: ndcg_at_3
            value: 86.822
          - type: ndcg_at_5
            value: 88.307
          - type: precision_at_1
            value: 82.44
          - type: precision_at_10
            value: 13.616
          - type: precision_at_100
            value: 1.362
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 38.117000000000004
          - type: precision_at_5
            value: 25.05
          - type: recall_at_1
            value: 71.652
          - type: recall_at_10
            value: 96.224
          - type: recall_at_100
            value: 96.224
          - type: recall_at_1000
            value: 96.224
          - type: recall_at_3
            value: 88.571
          - type: recall_at_5
            value: 92.812
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 61.295010338050474
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 67.26380819328142
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.683
          - type: map_at_10
            value: 14.924999999999999
          - type: map_at_100
            value: 17.532
          - type: map_at_1000
            value: 17.875
          - type: map_at_3
            value: 10.392
          - type: map_at_5
            value: 12.592
          - type: mrr_at_1
            value: 28.000000000000004
          - type: mrr_at_10
            value: 39.951
          - type: mrr_at_100
            value: 41.025
          - type: mrr_at_1000
            value: 41.056
          - type: mrr_at_3
            value: 36.317
          - type: mrr_at_5
            value: 38.412
          - type: ndcg_at_1
            value: 28.000000000000004
          - type: ndcg_at_10
            value: 24.410999999999998
          - type: ndcg_at_100
            value: 33.79
          - type: ndcg_at_1000
            value: 39.035
          - type: ndcg_at_3
            value: 22.845
          - type: ndcg_at_5
            value: 20.080000000000002
          - type: precision_at_1
            value: 28.000000000000004
          - type: precision_at_10
            value: 12.790000000000001
          - type: precision_at_100
            value: 2.633
          - type: precision_at_1000
            value: 0.388
          - type: precision_at_3
            value: 21.367
          - type: precision_at_5
            value: 17.7
          - type: recall_at_1
            value: 5.683
          - type: recall_at_10
            value: 25.91
          - type: recall_at_100
            value: 53.443
          - type: recall_at_1000
            value: 78.73
          - type: recall_at_3
            value: 13.003
          - type: recall_at_5
            value: 17.932000000000002
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 84.677978681023
          - type: cos_sim_spearman
            value: 83.13093441058189
          - type: euclidean_pearson
            value: 83.35535759341572
          - type: euclidean_spearman
            value: 83.42583744219611
          - type: manhattan_pearson
            value: 83.2243124045889
          - type: manhattan_spearman
            value: 83.39801618652632
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.68960206569666
          - type: cos_sim_spearman
            value: 77.3368966488535
          - type: euclidean_pearson
            value: 77.62828980560303
          - type: euclidean_spearman
            value: 76.77951481444651
          - type: manhattan_pearson
            value: 77.88637240839041
          - type: manhattan_spearman
            value: 77.22157841466188
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.18745821650724
          - type: cos_sim_spearman
            value: 85.04423285574542
          - type: euclidean_pearson
            value: 85.46604816931023
          - type: euclidean_spearman
            value: 85.5230593932974
          - type: manhattan_pearson
            value: 85.57912805986261
          - type: manhattan_spearman
            value: 85.65955905111873
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.6715333300355
          - type: cos_sim_spearman
            value: 82.9058522514908
          - type: euclidean_pearson
            value: 83.9640357424214
          - type: euclidean_spearman
            value: 83.60415457472637
          - type: manhattan_pearson
            value: 84.05621005853469
          - type: manhattan_spearman
            value: 83.87077724707746
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.82422928098886
          - type: cos_sim_spearman
            value: 88.12660311894628
          - type: euclidean_pearson
            value: 87.50974805056555
          - type: euclidean_spearman
            value: 87.91957275596677
          - type: manhattan_pearson
            value: 87.74119404878883
          - type: manhattan_spearman
            value: 88.2808922165719
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.80605838552093
          - type: cos_sim_spearman
            value: 86.24123388765678
          - type: euclidean_pearson
            value: 85.32648347339814
          - type: euclidean_spearman
            value: 85.60046671950158
          - type: manhattan_pearson
            value: 85.53800168487811
          - type: manhattan_spearman
            value: 85.89542420480763
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 89.87540978988132
          - type: cos_sim_spearman
            value: 90.12715295099461
          - type: euclidean_pearson
            value: 91.61085993525275
          - type: euclidean_spearman
            value: 91.31835942311758
          - type: manhattan_pearson
            value: 91.57500202032934
          - type: manhattan_spearman
            value: 91.1790925526635
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 69.87136205329556
          - type: cos_sim_spearman
            value: 68.6253154635078
          - type: euclidean_pearson
            value: 68.91536015034222
          - type: euclidean_spearman
            value: 67.63744649352542
          - type: manhattan_pearson
            value: 69.2000713045275
          - type: manhattan_spearman
            value: 68.16002901587316
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.21849551039082
          - type: cos_sim_spearman
            value: 85.6392959372461
          - type: euclidean_pearson
            value: 85.92050852609488
          - type: euclidean_spearman
            value: 85.97205649009734
          - type: manhattan_pearson
            value: 86.1031154802254
          - type: manhattan_spearman
            value: 86.26791155517466
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 86.83953958636627
          - type: mrr
            value: 96.71167612344082
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 64.994
          - type: map_at_10
            value: 74.763
          - type: map_at_100
            value: 75.127
          - type: map_at_1000
            value: 75.143
          - type: map_at_3
            value: 71.824
          - type: map_at_5
            value: 73.71
          - type: mrr_at_1
            value: 68.333
          - type: mrr_at_10
            value: 75.749
          - type: mrr_at_100
            value: 75.922
          - type: mrr_at_1000
            value: 75.938
          - type: mrr_at_3
            value: 73.556
          - type: mrr_at_5
            value: 74.739
          - type: ndcg_at_1
            value: 68.333
          - type: ndcg_at_10
            value: 79.174
          - type: ndcg_at_100
            value: 80.41
          - type: ndcg_at_1000
            value: 80.804
          - type: ndcg_at_3
            value: 74.361
          - type: ndcg_at_5
            value: 76.861
          - type: precision_at_1
            value: 68.333
          - type: precision_at_10
            value: 10.333
          - type: precision_at_100
            value: 1.0999999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.778
          - type: precision_at_5
            value: 19.067
          - type: recall_at_1
            value: 64.994
          - type: recall_at_10
            value: 91.822
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 78.878
          - type: recall_at_5
            value: 85.172
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.72079207920792
          - type: cos_sim_ap
            value: 93.00265215525152
          - type: cos_sim_f1
            value: 85.06596306068602
          - type: cos_sim_precision
            value: 90.05586592178771
          - type: cos_sim_recall
            value: 80.60000000000001
          - type: dot_accuracy
            value: 99.66039603960397
          - type: dot_ap
            value: 91.22371407479089
          - type: dot_f1
            value: 82.34693877551021
          - type: dot_precision
            value: 84.0625
          - type: dot_recall
            value: 80.7
          - type: euclidean_accuracy
            value: 99.71881188118812
          - type: euclidean_ap
            value: 92.88449963304728
          - type: euclidean_f1
            value: 85.19480519480518
          - type: euclidean_precision
            value: 88.64864864864866
          - type: euclidean_recall
            value: 82
          - type: manhattan_accuracy
            value: 99.73267326732673
          - type: manhattan_ap
            value: 93.23055393056883
          - type: manhattan_f1
            value: 85.88957055214725
          - type: manhattan_precision
            value: 87.86610878661088
          - type: manhattan_recall
            value: 84
          - type: max_accuracy
            value: 99.73267326732673
          - type: max_ap
            value: 93.23055393056883
          - type: max_f1
            value: 85.88957055214725
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 77.3305735900358
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 41.32967136540674
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.95514866379359
          - type: mrr
            value: 56.95423245055598
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.783007208997144
          - type: cos_sim_spearman
            value: 30.373444721540533
          - type: dot_pearson
            value: 29.210604111143905
          - type: dot_spearman
            value: 29.98809758085659
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.234
          - type: map_at_10
            value: 1.894
          - type: map_at_100
            value: 1.894
          - type: map_at_1000
            value: 1.894
          - type: map_at_3
            value: 0.636
          - type: map_at_5
            value: 1
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93.667
          - type: mrr_at_100
            value: 93.667
          - type: mrr_at_1000
            value: 93.667
          - type: mrr_at_3
            value: 93.667
          - type: mrr_at_5
            value: 93.667
          - type: ndcg_at_1
            value: 85
          - type: ndcg_at_10
            value: 74.798
          - type: ndcg_at_100
            value: 16.462
          - type: ndcg_at_1000
            value: 7.0889999999999995
          - type: ndcg_at_3
            value: 80.754
          - type: ndcg_at_5
            value: 77.319
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 78
          - type: precision_at_100
            value: 7.8
          - type: precision_at_1000
            value: 0.7799999999999999
          - type: precision_at_3
            value: 83.333
          - type: precision_at_5
            value: 80.80000000000001
          - type: recall_at_1
            value: 0.234
          - type: recall_at_10
            value: 2.093
          - type: recall_at_100
            value: 2.093
          - type: recall_at_1000
            value: 2.093
          - type: recall_at_3
            value: 0.662
          - type: recall_at_5
            value: 1.0739999999999998
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.703
          - type: map_at_10
            value: 10.866000000000001
          - type: map_at_100
            value: 10.866000000000001
          - type: map_at_1000
            value: 10.866000000000001
          - type: map_at_3
            value: 5.909
          - type: map_at_5
            value: 7.35
          - type: mrr_at_1
            value: 36.735
          - type: mrr_at_10
            value: 53.583000000000006
          - type: mrr_at_100
            value: 53.583000000000006
          - type: mrr_at_1000
            value: 53.583000000000006
          - type: mrr_at_3
            value: 49.32
          - type: mrr_at_5
            value: 51.769
          - type: ndcg_at_1
            value: 34.694
          - type: ndcg_at_10
            value: 27.926000000000002
          - type: ndcg_at_100
            value: 22.701
          - type: ndcg_at_1000
            value: 22.701
          - type: ndcg_at_3
            value: 32.073
          - type: ndcg_at_5
            value: 28.327999999999996
          - type: precision_at_1
            value: 36.735
          - type: precision_at_10
            value: 24.694
          - type: precision_at_100
            value: 2.469
          - type: precision_at_1000
            value: 0.247
          - type: precision_at_3
            value: 31.973000000000003
          - type: precision_at_5
            value: 26.939
          - type: recall_at_1
            value: 2.703
          - type: recall_at_10
            value: 17.702
          - type: recall_at_100
            value: 17.702
          - type: recall_at_1000
            value: 17.702
          - type: recall_at_3
            value: 7.208
          - type: recall_at_5
            value: 9.748999999999999
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 70.79960000000001
          - type: ap
            value: 15.467565415565815
          - type: f1
            value: 55.28639823443618
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 64.7792869269949
          - type: f1
            value: 65.08597154774318
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 55.70352297774293
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 88.27561542588067
          - type: cos_sim_ap
            value: 81.08262141256193
          - type: cos_sim_f1
            value: 73.82341501361338
          - type: cos_sim_precision
            value: 72.5720112159062
          - type: cos_sim_recall
            value: 75.11873350923483
          - type: dot_accuracy
            value: 86.66030875603504
          - type: dot_ap
            value: 76.6052349228621
          - type: dot_f1
            value: 70.13897280966768
          - type: dot_precision
            value: 64.70457079152732
          - type: dot_recall
            value: 76.56992084432717
          - type: euclidean_accuracy
            value: 88.37098408535495
          - type: euclidean_ap
            value: 81.12515230092113
          - type: euclidean_f1
            value: 74.10338225909379
          - type: euclidean_precision
            value: 71.76761433868974
          - type: euclidean_recall
            value: 76.59630606860158
          - type: manhattan_accuracy
            value: 88.34118137926924
          - type: manhattan_ap
            value: 80.95751834536561
          - type: manhattan_f1
            value: 73.9119496855346
          - type: manhattan_precision
            value: 70.625
          - type: manhattan_recall
            value: 77.5197889182058
          - type: max_accuracy
            value: 88.37098408535495
          - type: max_ap
            value: 81.12515230092113
          - type: max_f1
            value: 74.10338225909379
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.79896767182831
          - type: cos_sim_ap
            value: 87.40071784061065
          - type: cos_sim_f1
            value: 79.87753144712087
          - type: cos_sim_precision
            value: 76.67304015296367
          - type: cos_sim_recall
            value: 83.3615645210964
          - type: dot_accuracy
            value: 88.95486474948578
          - type: dot_ap
            value: 86.00227979119943
          - type: dot_f1
            value: 78.54601474525914
          - type: dot_precision
            value: 75.00525394045535
          - type: dot_recall
            value: 82.43763473975977
          - type: euclidean_accuracy
            value: 89.7892653393876
          - type: euclidean_ap
            value: 87.42174706480819
          - type: euclidean_f1
            value: 80.07283321194465
          - type: euclidean_precision
            value: 75.96738529574351
          - type: euclidean_recall
            value: 84.6473668001232
          - type: manhattan_accuracy
            value: 89.8474793340319
          - type: manhattan_ap
            value: 87.47814292587448
          - type: manhattan_f1
            value: 80.15461150280949
          - type: manhattan_precision
            value: 74.88798234468
          - type: manhattan_recall
            value: 86.21804742839544
          - type: max_accuracy
            value: 89.8474793340319
          - type: max_ap
            value: 87.47814292587448
          - type: max_f1
            value: 80.15461150280949
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

GritLM/GritLM-7B - GGUF

This repo contains GGUF format model files for GritLM/GritLM-7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<s><|user|>
{prompt}
<|assistant|>

Model file specification

Filename Quant type File Size Description
GritLM-7B-Q2_K.gguf Q2_K 2.532 GB smallest, significant quality loss - not recommended for most purposes
GritLM-7B-Q3_K_S.gguf Q3_K_S 2.947 GB very small, high quality loss
GritLM-7B-Q3_K_M.gguf Q3_K_M 3.277 GB very small, high quality loss
GritLM-7B-Q3_K_L.gguf Q3_K_L 3.560 GB small, substantial quality loss
GritLM-7B-Q4_0.gguf Q4_0 3.827 GB legacy; small, very high quality loss - prefer using Q3_K_M
GritLM-7B-Q4_K_S.gguf Q4_K_S 3.856 GB small, greater quality loss
GritLM-7B-Q4_K_M.gguf Q4_K_M 4.068 GB medium, balanced quality - recommended
GritLM-7B-Q5_0.gguf Q5_0 4.654 GB legacy; medium, balanced quality - prefer using Q4_K_M
GritLM-7B-Q5_K_S.gguf Q5_K_S 4.654 GB large, low quality loss - recommended
GritLM-7B-Q5_K_M.gguf Q5_K_M 4.779 GB large, very low quality loss - recommended
GritLM-7B-Q6_K.gguf Q6_K 5.534 GB very large, extremely low quality loss
GritLM-7B-Q8_0.gguf Q8_0 7.167 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/GritLM-7B-GGUF --include "GritLM-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/GritLM-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'