File size: 7,554 Bytes
eb4c3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- en
license: mit
tags:
- moe
- TensorBlock
- GGUF
base_model: TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
- name: FusionNet_7Bx2_MoE_14B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.55
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.84
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 69.6
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 88.16
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
      name: Open LLM Leaderboard
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## TomGrc/FusionNet_7Bx2_MoE_14B - GGUF

This repo contains GGUF format model files for [TomGrc/FusionNet_7Bx2_MoE_14B](https://huggingface.co/TomGrc/FusionNet_7Bx2_MoE_14B).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [FusionNet_7Bx2_MoE_14B-Q2_K.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q2_K.gguf) | Q2_K | 4.761 GB | smallest, significant quality loss - not recommended for most purposes |
| [FusionNet_7Bx2_MoE_14B-Q3_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q3_K_S.gguf) | Q3_K_S | 5.588 GB | very small, high quality loss |
| [FusionNet_7Bx2_MoE_14B-Q3_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q3_K_M.gguf) | Q3_K_M | 6.206 GB | very small, high quality loss |
| [FusionNet_7Bx2_MoE_14B-Q3_K_L.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q3_K_L.gguf) | Q3_K_L | 6.730 GB | small, substantial quality loss |
| [FusionNet_7Bx2_MoE_14B-Q4_0.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q4_0.gguf) | Q4_0 | 7.281 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [FusionNet_7Bx2_MoE_14B-Q4_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q4_K_S.gguf) | Q4_K_S | 7.342 GB | small, greater quality loss |
| [FusionNet_7Bx2_MoE_14B-Q4_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q4_K_M.gguf) | Q4_K_M | 7.783 GB | medium, balanced quality - recommended |
| [FusionNet_7Bx2_MoE_14B-Q5_0.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q5_0.gguf) | Q5_0 | 8.874 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [FusionNet_7Bx2_MoE_14B-Q5_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q5_K_S.gguf) | Q5_K_S | 8.874 GB | large, low quality loss - recommended |
| [FusionNet_7Bx2_MoE_14B-Q5_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q5_K_M.gguf) | Q5_K_M | 9.133 GB | large, very low quality loss - recommended |
| [FusionNet_7Bx2_MoE_14B-Q6_K.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q6_K.gguf) | Q6_K | 10.567 GB | very large, extremely low quality loss |
| [FusionNet_7Bx2_MoE_14B-Q8_0.gguf](https://huggingface.co/tensorblock/FusionNet_7Bx2_MoE_14B-GGUF/blob/main/FusionNet_7Bx2_MoE_14B-Q8_0.gguf) | Q8_0 | 13.686 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/FusionNet_7Bx2_MoE_14B-GGUF --include "FusionNet_7Bx2_MoE_14B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/FusionNet_7Bx2_MoE_14B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```