tectonatech's picture
End of training
90aa7db verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-fine_tune
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8781512605042017

swin-tiny-patch4-window7-224-fine_tune

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5958
  • Accuracy: 0.8782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.175 0.96 16 4.7967 0.1345
4.1158 1.97 33 2.9977 0.3824
2.0676 2.99 50 1.5415 0.6807
1.4395 4.0 67 0.9951 0.8151
0.9396 4.96 83 0.8235 0.8277
0.7456 5.97 100 0.7195 0.8361
0.666 6.99 117 0.6406 0.8613
0.5893 8.0 134 0.6045 0.8739
0.4704 8.96 150 0.6016 0.8655
0.4475 9.97 167 0.5958 0.8782
0.3937 10.99 184 0.5856 0.8782
0.3327 12.0 201 0.5761 0.8782
0.3277 12.96 217 0.5758 0.8782
0.2928 13.97 234 0.5754 0.8739
0.2545 14.99 251 0.5711 0.8739
0.2657 16.0 268 0.5851 0.8739
0.2457 16.96 284 0.5805 0.8655
0.2359 17.97 301 0.5762 0.8697
0.2849 18.99 318 0.5792 0.8739
0.223 19.1 320 0.5792 0.8739

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1