File size: 3,334 Bytes
7490561 5b53272 7490561 f4cfda0 7490561 f4cfda0 2637cea c595f7f f4cfda0 176577b f4cfda0 176577b f4cfda0 c595f7f ecf89bf 7490561 8ae90f8 7490561 77c9fa3 7490561 8ae90f8 7490561 83e52f8 128b343 4b9e5e3 128b343 ecf89bf 7490561 4c3544a 7490561 5b53272 4c3544a 7490561 56b4608 7490561 5b53272 56b4608 7490561 e67eb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- go_emotions
metrics:
- f1
model-index:
- name: text-classification-goemotions
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: test
args: simplified
metrics:
- name: F1
type: f1
value: 0.5072
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text Classification GoEmotions
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset.
## Model description
At first, 4 epochs of training with a learning rate of 5e-5 was performed on the `roberta-large` model.
After that, the weights were loaded in a new environment and another epoch of training was done (this time with a learning rate of 2e-5).
As the performance decreased in the fifth epoch, further training was discontinued.
After the 4th epoch, the model achieved a macro-F1 score of 53% on the test set, but the fifth epoch reduced the performance.
The model on commit "5b532728cef22ca9e9bacc8ff9f5687654d36bf3" attains the following scores on the test set:
- Accuracy: 0.4271236410539893
- Precision: 0.5101494353184485
- Recall: 0.5763722014150806
- macro-F1: 0.5297380709491947
Load this specific version of the model using the syntax below:
```py
import os
from transformers import AutoTokenizer, AutoModelForSequenceClassification
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
model_name = "tasinhoque/text-classification-goemotions"
commit = "5b532728cef22ca9e9bacc8ff9f5687654d36bf3"
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=commit)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=n_emotion,
problem_type="multi_label_classification",
revision=commit
).to(device)
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05 (2e-5 in the 5th epoch)
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42 (only in the 5th epoch)
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 340 | 0.0884 | 0.3782 | 0.4798 | 0.4643 | 0.4499 |
| 0.1042 | 2.0 | 680 | 0.0829 | 0.4093 | 0.4766 | 0.5272 | 0.4879 |
| 0.1042 | 3.0 | 1020 | 0.0821 | 0.4202 | 0.5103 | 0.5531 | 0.5092 |
| 0.0686 | 4.0 | 1360 | 0.0830 | 0.4327 | 0.5160 | 0.5556 | 0.5226 |
| No log | 5.0 | 1700 | 0.0961 | 0.4521 | 0.5190 | 0.5359 | 0.5218 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.1.0
- Tokenizers 0.12.1 |