librarian-bot's picture
Librarian Bot: Add base_model information to model
b0d0dc5
|
raw
history blame
2.53 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - go_emotions
metrics:
  - f1
base_model: roberta-large
model-index:
  - name: roberta-large-go-emotions-3
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: go_emotions
          type: multilabel_classification
          config: simplified
          split: test
          args: simplified
        metrics:
          - type: f1
            value: 0.5204
            name: F1
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: go_emotions
          type: multilabel_classification
          config: simplified
          split: validation
          args: simplified
        metrics:
          - type: f1
            value: 0.5208
            name: F1

roberta-large-go-emotions-2

This model is a fine-tuned version of roberta-large on the go_emotions dataset. It achieves the following results on the test set (with a threshold of 0.15):

  • Accuracy: 0.4363
  • Precision: 0.4955
  • Recall: 0.5655
  • F1: 0.5204

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Validation Loss Accuracy Precision Recall F1
No log 1.0 0.0889 0.4043 0.4807 0.4568 0.4446
0.1062 2.0 0.0828 0.4113 0.4608 0.5363 0.4868
0.1062 3.0 0.0813 0.4201 0.5198 0.5612 0.5227
No log 4.0 0.0862 0.4292 0.5012 0.5558 0.5208
0.0597 5.0 0.0924 0.4329 0.5164 0.5362 0.5151
0.0597 6.0 0.0956 0.4445 0.5241 0.5328 0.5161

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1